Journal of Materials Science

, Volume 29, Issue 17, pp 4651–4658 | Cite as

The mechanical properties of ternary composites of polypropylene with inorganic fillers and elastomer inclusions

  • J. Jancar
  • A. T. Dibenedetto


The effect of elastomer volume fraction and phase morphology on the elastic modulus of ternary composites polypropylene (PP)/ethylene-propylene rubber (EPR)/inorganic filler containing 30 vol % of either spherical or lamellar filler has been investigated. Phase morphology was controlled using maleated polypropylene (MPP) and/or maleated ethylene-propylene elastomer (MEPR). As revealed by SEM observations, composites of MPP/EPR/filler exhibit separation of the filler and elastomer and good adhesion between MPP and the filler, whereas composites of PP/MEPR/filler exhibit encapsulation of the filler by MEPR. Composite models were utilized to estimate upper and lower bounds for the elastic modulus of these materials, which is strongly dependent on the morphology of the ternary composite. A model based on the Kerner equation for perfect separation of the soft inclusions and rigid fillers gives a good prediction of the upper limit for relative elastic modulus as a function of filler and elastomer volume fractions. The lower limit, achieved in the case of perfect encapsulation, depends significantly on the particle shape. Good agreement was found between experimental data and lower limits predicted using the Halpin-Tsai equation for lamellar filler and the Kerner-Nielsen equation for spherical filler. In order to calculate reinforcing efficiency of the core-shell inclusions, the finite element method (ANSYS 4.4A, GT STRUDL) has been used.


Elastic Modulus Finite Element Method Polypropylene Encapsulation Composite Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. Nielsen, J. Compos. Mater. 1Google Scholar
  2. 2.
    J. C. Halpin and J. L. Kardos, Polym. Eng. Sci. 16 (1976) 344.CrossRefGoogle Scholar
  3. 3.
    S. W. Tsai and N. J. Pagano, in “Composite Materials Workshop”, edited by S. W. Tsai, J. C. Halpin and N. J. Pagano, (Technomic, Stamford, CT, 1968) p. 233.Google Scholar
  4. 4.
    B. W. Rosen, Mechanics of Composite Strengthening, in “Fiber Composite Materials”, (ASM, 1965) p. 37.Google Scholar
  5. 5.
    L. Dilandro, A. T. Dibenedetto and J. Groeger, Polym. Comp. 9 (1988) 209.CrossRefGoogle Scholar
  6. 6.
    L. J. Broutman and B. D. Agarwal, “Analysis of Performance of Fibrous Composites” (J. Wiley, New York, 1980).Google Scholar
  7. 7.
    V. A. Matonis and N. C. Small, Polym. Eng. Sci. 9 (1969) 91.Google Scholar
  8. 8.
    V. A. Matonis, Polym. Eng. Sci. 9 (1969) 100.CrossRefGoogle Scholar
  9. 9.
    J. Kolarik, Polym. Comm. 31 (1990) 201.Google Scholar
  10. 10.
    B. Pukanszky, F. Tudos, J. Kolarik and F. Lednicky, Polym. Compos. 11 (1990) 98.CrossRefGoogle Scholar
  11. 11.
    J. Jancar and J. Kucera, Polym. Eng. Sci. 30 (1990) 714.CrossRefGoogle Scholar
  12. 12.
    C. B. Bucknall, Makromol. Chem., Macromol Symp. 16 (1988) 209.CrossRefGoogle Scholar
  13. 13.
    J. Kolarik, F. Lednicky, J. Jancar and B. Pukanszky, Polym. Commun. 31 (1990) 201.Google Scholar
  14. 14.
    J. Kolarik, F. Lednicky, and B. Pukanszky, “Proc. 6th Int. Conf. on Compos. Mater.” vol 1 (Elsevier, London, 1987) p. 452.Google Scholar
  15. 15.
    J. Kolarik and J. Jancar, Polymer 32 (1992) 4961.CrossRefGoogle Scholar
  16. 16.
    J. Jancar, A. Dianselmo and A. T. Dibenedetto, Polymer 34 (1993) 1684.CrossRefGoogle Scholar
  17. 17.
    J. C. Halpin and J. Raisoni, Polym. Eng. Sci. 15 (1975) 183.CrossRefGoogle Scholar
  18. 18.
    J. C. Halpin and J. L. Kardos, J. Appl. Phys. 43 (1972) 2235.CrossRefGoogle Scholar
  19. 19.
    L. J. Broutman and B. D. Agarwal, Polym. Eng. Sci. 14 (1974) 581.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. Jancar
    • 1
  • A. T. Dibenedetto
    • 1
  1. 1.Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations