Advertisement

Journal of Materials Science

, Volume 29, Issue 17, pp 4611–4617 | Cite as

Hardness, elasticity modulus and flexion strength of dry set plaster

  • P. Coquard
  • R. Boistelle
  • L. Amathieu
  • P. Barriac
Papers

Abstract

In this study the mechanical properties of dry set plasters are of interest. Shore C hardness of different plasters is given as a function of porosity for porosities ranging from 41 to 65 vol%. The data, and data collected from literature, show that Young's modulus follows an empirical power law for porosities ranging from 26 to 70 vol%. Flexion strengths were measured on samples of different sizes and porosities (41.4–65 vol%). As they are size dependent, strength variation cannot be correlated to the sole porosity. Finally, analysing the results with Weibull's theory led to the proposition of a brittleness scale for plasters. Brittleness increases with decreasing porosity.

Keywords

Polymer Mechanical Property Porosity Brittleness Elasticity Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Röbler and I. Odler, Zement Kalk Gips 2 (1989) 96.Google Scholar
  2. 2.
    Lafarge Coppee Recherche, private communication.Google Scholar
  3. 3.
    I. Soroka and P. J. Sereda, J. Amer. Ceram. Soc. 51 (1967) 337.CrossRefGoogle Scholar
  4. 4.
    K. K. Phani, Amer. Ceram. Bull 65 (1986) 1584.Google Scholar
  5. 5.
    L. Amathieu and R. Boistelle, J. Cryst. Growth 88 (1988) 183.CrossRefGoogle Scholar
  6. 6.
    P. Coquard, Thesis, Université d'Aix-Marseille III, France (1992).Google Scholar
  7. 7.
    L. Amathieu and R. Boistelle, J. Cryst. Growth 79 (1986) 169.CrossRefGoogle Scholar
  8. 8.
    S. Timoshenko, in “Résistance des Matériaux”, Vol. I (Dunod, Paris, 1972) pp. 89–164.Google Scholar
  9. 9.
    K. K. Phani and S. K. Niyogi, J. Mater. Sci. 22 (1987) 257.CrossRefGoogle Scholar
  10. 10.
    D. P. H. Hasselman, J. Amer. Ceram. Soc. 45 (1962) 452.CrossRefGoogle Scholar
  11. 11.
    J. C. Wang, J. Mater. Sci. 19 (1984) 801.CrossRefGoogle Scholar
  12. 12.
    F. Knudsen, J. Amer. Ceram. Soc. 42 (1959) 376.CrossRefGoogle Scholar
  13. 13.
    S. C. Williams, Tectonophysics 148 (1988) 163.CrossRefGoogle Scholar
  14. 14.
    A. Carpenteri, Nota Technica No. 73, ISCB (University of Bologna, 1983).Google Scholar
  15. 15.
    E. Orowan, in “Fundamentals of Brittle Behavior in Metals”, MIT Symposium on Fatigue and Fracture of Metals, June 1950 edited by E. Orowan (Wiley, New York), 1952) p. 154.Google Scholar
  16. 16.
    J. J. Gilman, J. Appl. Phys. 31 (1960) 2208.CrossRefGoogle Scholar
  17. 17.
    D. W. Hobbs, Int. J. Rock. Mech. Mining. Sci. 1 (1964) 385.CrossRefGoogle Scholar
  18. 18.
    P. Haasen, in “Physical Metallurgy”, 2nd Edn edited by P. Haasen (Cambridge University Press, 1986) p. 62.Google Scholar
  19. 19.
    W. Weibull, J. Appl. Rech. 18 (1951) 293.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Coquard
    • 1
  • R. Boistelle
    • 1
  • L. Amathieu
    • 2
  • P. Barriac
    • 2
  1. 1.Centre de Recherche sur les Mécanismes de la Croissance, CristallineCNRSMarseille cedex 09France
  2. 2.Lafarge-Coppée RechercheLa Verpillière cedexFrance

Personalised recommendations