Advertisement

Journal of Materials Science

, Volume 29, Issue 17, pp 4592–4603 | Cite as

An investigation on the bearing test procedure for fibre-reinforced aluminium laminates

  • H. F. Wu
  • L. L. Wu
  • W. J. Slagter
Papers

Abstract

Excellent fatigue, static strength and damage tolerance characteristics together with low density make fibre-reinforced aluminium laminates a prime candidate sheet material for application in fatigue- and fracture-critical aircraft structures. Their use requires that mechanical property design allowables be established for incorporation in design handbooks (e.g. MIL-HDBK-5). An experimental programme based on statistical design was conducted to establish a meaningful test procedure for determination of fibre-metal laminate bearing strength design allowables. The test procedures investigated are the pin-type bearing test method (ASTM E-238) and the bolt-type bearing test method, a modified method based on the procedure for bearing strength determinations in plastics (ASTM D-953). Results are presented from an experimental programme which measured the bearing strengths of two grades of S-2 glass-based and one grade of aramid-based aluminium laminates. The influences of lateral constraint and ply orientation on bearing strength and failure mode are shown. The bolt-type bearing test method, which combines the attributes of the two aforementioned methods, is recommended. The study also showed that the bearing properties for edge distance ratio e/D = 2 can be predicted by correlation with the aluminium volume fraction in fibre-reinforced aluminium laminates. In addition, diagrams of joint structural efficiency, shown to be comparable to those of aluminium alloy sheets, have been established.

Keywords

Fatigue Alloy Sheet Damage Tolerance Distance Ratio Aluminium Alloy Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Marissen and L. B. Vogelesang, in Proceedings of International SAMPE Conference, Cannes, France, 1981.Google Scholar
  2. 2.
    L. B. Vogelesang, R. Marissen and J. Schijve, in Proceedings of 11th ICAF Symposium, Noordwijkerhout, The Netherlands, 1981.Google Scholar
  3. 3.
    J. W. Gunnink, L. B. Vogelesang and J. Schijve, in Proceedings of 13th Congress of the International Council of Aerospace Science, Seattle, Washington, 1982, p. 990.Google Scholar
  4. 4.
    L. B. Vogelesang and J. W. Gunnink, “ARALL, A Material for the Next Generation of Aircraft. A state-of-the Art,” Report LR-400 (Department of Aerospace Engineering, Delft University of Technology, The Netherlands, 1983).Google Scholar
  5. 5.
    J. W. Gunnink, M. L. C. E. Verbruggen and L. B. Vogelesang, Vertica 10 (1986) 241.Google Scholar
  6. 6.
    L. B. Vogelesang and J. W. Gunnink, Mater. Design 7 (2) 1986.Google Scholar
  7. 7.
    R. J. Bucci, L. N. Mueller, R. W. Schultz and J. L. Prohaska, in Proceedings of 32nd International SAMPE Symposium and Exhibition, Anaheim, California, 1987, p. 902.Google Scholar
  8. 8.
    Proceedings of ARALL Laminates Technical Conference, Champion, Pennsylvania (Alcoa Laboratories, Alcoa Center, Pennsylvania, 1987).Google Scholar
  9. 9.
    R. J. Bucci, L. N. Mueller, L. B. Vogelesang and J. W. Gunnink, in “Aluminum Alloys-Contemporary Research and Applications”, Treatise on Materials Science and Technology Vol. 31 (Academic, San Diego, CA, 1989) p. 295.Google Scholar
  10. 10.
    J. W. Gunnink and L. B. Vogelesang, in Proceedings of 35th International SAMPE Symposium and Exhibition, Anaheim, California, 1990, p. 1708.Google Scholar
  11. 11.
    Idem, in Proceedings of 36th International SAMPE Symposium and Exhibition, San Diego, California, 1991, p. 1509.Google Scholar
  12. 12.
    M. A. Gregory, and G. H. J. J. Roebroeks, in Proceedings of 30th Annual Conference of Metallurgists (Metallurgical Society of CIM, Ottawa, 1991).Google Scholar
  13. 13.
    L. H. van Veggel, in Proceedings of 42nd Annual General Meeting of the Aeronautical Society of India, Calcutta, 1990.Google Scholar
  14. 14.
    W. Leodolter and R. G. Pettit, Douglas Paper No. 8164, in Proceedings of Specialist Conference on ARALL Laminates, Delft University of Technology, The Netherlands, 1988.Google Scholar
  15. 15.
    R. G. Pettit, in Proceedings of AEROMAT'91, Long Beach, CA, May 1991.Google Scholar
  16. 16.
    H. F. Wu, J. Mater. Sci. 25 (1990) 1120.CrossRefGoogle Scholar
  17. 17.
    H. F. Wu and J. F. Dalton, in Proceedings of 36th International SAMPE Symposium and Exhibition, San Diego, California, 1991, p. 2040.Google Scholar
  18. 18.
    H. F. Wu, J. Mater. Sci. 26 (1991) 3721.CrossRefGoogle Scholar
  19. 19.
    “Metallic Materials and Elements for Aerospace Vehicles Structures,” Military Handbook MIL-HDBK-5F, Vols. 1 and 2 (US Department of Defense, 1990).Google Scholar
  20. 20.
    H. F. Wu, R. J. Bucci, R. H. Wygonik and R. C. Rice, in Proceedings of AEROMAT' 91, Long Beach, California, May 1991 and ICCM/8, Honolulu, Hawaii, July 1991.Google Scholar
  21. 21.
    idem, AIAA J. Aircraft, 30 (1993) 275.CrossRefGoogle Scholar
  22. 22.
    E. W. Godwin and F. L. Matthews, Composites (1980) 155.Google Scholar
  23. 23.
    T. A. Collings, in “Joining Fibre-Reinforced Plastics” (Elsevier Applied Science, London, 1987).Google Scholar
  24. 24.
    F. L. Matthews, ibid.in “Google Scholar
  25. 25.
    G. Kretsis and F. L. Matthews, Composites (1985) 92.Google Scholar
  26. 26.
    T. A. Collings, ibid. (1982) 241.Google Scholar
  27. 27.
    J. H. Stockdale and F. L. Matthews, ibid. (1976) 34.Google Scholar
  28. 28.
    I. Eriksson, J. Compos. Mater. 24 (1990) 1246.CrossRefGoogle Scholar
  29. 29.
    D. F. Adams, Polym. Compos. 11 (1990) 286.CrossRefGoogle Scholar
  30. 30.
    W. R. Broughton, M. Kumosa and P. Hull, Compos. Sci. Technol. 38 (1990) 299.CrossRefGoogle Scholar
  31. 31.
    ASTM E-238, “Standard Test Method for Pin-Type Bearing Test of Metallic Materials” (1984).Google Scholar
  32. 32.
    W. J. Slagter, J. Compos. Mater. 26 (1992) 2542.CrossRefGoogle Scholar
  33. 33.
    H. F. Wu, “Parametric Studies of Bearing Strength for Fiber/Metal Laminates,” SLC Report SL-019-C (Structural Laminates Co., New Kensington, PA, 1991).Google Scholar
  34. 34.
    ASTM D-953, “Standard Test Method for Bearing Strength of Plastic Properties” (1987).Google Scholar
  35. 35.
    L. J. Hart-Smith, Douglas Aircraft Co. Paper DP 6748A (1978), also contained in “Fibrous Composites in Structural Design”, edited by E. M. Lenoe, D. W. Oplinger and J. J. Burke (Plenum, New York, 1980) p. 543.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. F. Wu
    • 1
  • L. L. Wu
    • 1
  • W. J. Slagter
    • 2
  1. 1.Alcoa Technical CenterAlcoa CenterUSA
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations