Journal of Materials Science

, Volume 29, Issue 17, pp 4567–4576 | Cite as

Response of aluminium-infiltrated boron carbide cermets to shock wave loading

  • W. R. Blumenthal
  • G. T. GrayIII
  • T. N. Claytor


Shock-recovery and shock-spallation experiments were performed on two compositions of aluminium-infiltrated B4C cermets as a function of shock pressure. Sixty-five per cent volume B4C-Al cermets were recovered largely intact after shock loading up to pressures of ca. 12 GPa which permitted a critical study of the microstructural changes produced by the shock. Significantly, shock loading to between 12 and 13 GPa produced a combination of dislocation debris, stacking faults and deformation twins in a small fraction of the B4C grains. Fragmentation of shock-loaded 80% B4C-Al samples prevented meaningful microstructural investigation. Spall-strength testing also provided indirect evidence for the Hugoniot elastic limits (HEL) of these composites. Spall-strength calculations based on an elastic equation of state for 65% B4C-Al indicated that the elastic regime extended up to shock pressures of ca. 10 GPa, or approximately 65% of the HEL of polycrystalline B4C. A complete loss of spall strength was then observed at the transition to a plastic equation of state at a pressure of 12 GPa which coincided with observations of plasticity within the B4C-substructure. This study demonstrated that composites containing a highly ductile phase combined with a high compressive strength ceramic phase could support high dynamic tensile stresses by resisting the propagation of catastrophic cracks through the brittle ceramic substructure.


Shock Wave Compressive Strength Boron Carbide Deformation Twin Shock Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. E. Grady and M. E. Kipp, Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 16 (1979) 293.CrossRefGoogle Scholar
  2. 2.
    M. E. Kipp and D. E. Grady, “Shock compression and release in high-strength ceramics” (Sandia National Laboratory, SAND89-1461, UC-704, July 1989).Google Scholar
  3. 3.
    G. T. Gray III, “Shock-wave and high strain-rate phenomena in materials”, edited by M. Meyers, L. Murr and K. Staudhammer (Mercel Dekker, New York, 1992) p. 899.Google Scholar
  4. 4.
    Y. Syono, T. Goto, Y. Nakagawa and M. Kitamura, in “High pressure research”, edited by M. H. Manghnani and S. Akimoto (Academic Press, New York, 1977) p. 477.CrossRefGoogle Scholar
  5. 5.
    D. E. Grady, “ p. 389.CrossRefGoogle Scholar
  6. 6.
    R. Jealoz, J. Geophysical Res. 85 (1980) 3163.CrossRefGoogle Scholar
  7. 7.
    J. A. Brusso, D. E. Mikkola, J. E. Flinn and P. V. Kelsey, Scripta Metall. 22 (1988) 47.CrossRefGoogle Scholar
  8. 8.
    D. M. Vanderwalker and W. J. Croft, J. Mater. Res. 3 (1988) 761.CrossRefGoogle Scholar
  9. 9.
    L. Lourdo, A. Lindfors and M. Meyers, Dymat88 J. De Physique Colloque C3 Supplement # 9 49 (1988) 133.Google Scholar
  10. 10.
    D. Millius, Private communication (1989).Google Scholar
  11. 11.
    T. P. Liddiard Jr, in “Fourth symposium on detonation”, edited by USNOL (US Government Printing Office, Washington, DC 1965) p. 214.Google Scholar
  12. 12.
    L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 41 (1970) 4208.CrossRefGoogle Scholar
  13. 13.
    V. I. Romanchenko and G. V. Stepanov, Zhur. Prik. Mekh. Tekh. Fia. 4 (1980) 141.Google Scholar
  14. 14.
    G. T. Gray III, P. S. Follansbee and C. E. Frantz, Mater. Sci. Engng. A111 (1989) 9.CrossRefGoogle Scholar
  15. 15.
    E. P. Papadakis, in “Physical acoustics principles and methods”, Vol. 12, edited by W. P. Mason and R. N. Thurston (Academic Press, New York, 1976) Ch. 5.Google Scholar
  16. 16.
    G. T. Gray III and J. C. Huang, Mater. Sci. Engng. A1415 (1991) 21.CrossRefGoogle Scholar
  17. 17.
    G. H. Kim, M. Sarikaya, D. L. Millius and A. K. Aksay, in “Proceedings of the 47th Annual Meeting of the Electron Microscopy Society of America”, edited by G. W. Bailey (San Francisco Press, CA, 1989) p. 562.Google Scholar
  18. 18.
    W. Voigt, in “Lehrbuch der kristallphysik” (Teubner, Leipzig, Germany, 1928) p. 739.Google Scholar
  19. 19.
    A. Reuss, Z. Angew. Math. Mech. 9 (1929) 49.CrossRefGoogle Scholar
  20. 20.
    R. Hill, Proc. Phys. Soc London A65 (1952) 349.CrossRefGoogle Scholar
  21. 21.
    W. R. Blumenthal, Unpublished work.Google Scholar
  22. 22.
    P. S. Follansbee, in “Shock compression of condensed matter — 1989”, edited by S. Schmidt, J. N. Johnson and L. Davidson (Elsevier, New York, 1990) p. 349.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • W. R. Blumenthal
    • 1
  • G. T. GrayIII
    • 1
  • T. N. Claytor
    • 2
  1. 1.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Design Engineering DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations