Advertisement

Journal of Materials Science

, Volume 29, Issue 17, pp 4535–4544 | Cite as

SIMS, EDX, EELS, AES, XPS study of interphases in nicalon fibre-LAS glass matrix composites

Part II Chemistry of the interphases
  • C. Ponthieu
  • C. Marhic
  • M. Lancin
  • N. Herbots
Papers

Abstract

Auger electron (AES), electron energy loss (EELS) and X-ray photoelectron spectroscopy (XPS) were used to identify the reaction products at the fibre-matrix interface in SiC nicalon fibre-LAS (Li2O, Al2O3, SiO2) or LAS + Nb2O5 glass matrix composites. Chemical bonding of the different elements was investigated by AES using sputter-depth profiling on fibres extracted from two matrices by etching in hydrofluoric acid. The chemistry of the silicium was studied by EELS in nicalon-LAS + Nb2O5 composite cross-sections. XPS was performed on fibres extracted from the nicalon-LAS + Nb2O5 composite to confirm EELS and AES results. These investigations show that in both composites the reaction scale at the fibre-matrix interface consists of a carbon layer next to the matrix and of a silicate phase rich in oxygen which contains carbon, probably in the form of a silicon oxycarbide, and which is located between the carbon layer and the fibre core.

Keywords

Auger Nb2O5 Li2O Auger Electron Hydrofluoric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Ponthieu, M. Lancin and J. Thibault-Desseaux, Phil. Mag. 62 (1990) 605.CrossRefGoogle Scholar
  2. 2.
    J. J. Brennan, J. Phys. suppl. 10 C5 (1988) 791.Google Scholar
  3. 3.
    R. F. Cooper and K. Chyung, J. Mater. Sci. 22 (1987) 3148.CrossRefGoogle Scholar
  4. 4.
    D. H. Grande, J. F. Mandell and K. C. C. Hong, ibid. 22 (1988) 311.CrossRefGoogle Scholar
  5. 5.
    B. Meier and G. Gratwhol, Fresenius Z Anal. Chem. (1989) 388.Google Scholar
  6. 6.
    L. Porte and A. Sartre, J. Mater. Sci. 24 (1989) 271.CrossRefGoogle Scholar
  7. 7.
    R. F. Egerton, “Electron Energy loss Spectroscopy in the Electron Microscope” (Plenum, New York, 1985).Google Scholar
  8. 8.
    J. Lipowitz, H. A. Freeman, R. T. Chen, E. R. Prack, Adv. Ceram. Mater. 2 (1987) 121.CrossRefGoogle Scholar
  9. 9.
    E. A. Gulbranser and S. A. Jansson, Oxid. Met. 4 (1972) 181.CrossRefGoogle Scholar
  10. 10.
    D. W. McKee and D. Chatterji, J. Am. Ceram. Soc. 71 (1988) 960.CrossRefGoogle Scholar
  11. 11.
    L. U. Ogbuji, J. Mater. Sci. 16 (1981) 2753.CrossRefGoogle Scholar
  12. 12.
    J. Costello and R. E. Tressler, J. Am. Ceram. Soc. 69 (1986) 674.CrossRefGoogle Scholar
  13. 13.
    R. F. Cooper and K. Chyung, J. Mater. Sci. 22 (1987) 3148.CrossRefGoogle Scholar
  14. 14.
    P. M. Benson, K. E. Spear and C. G. Pentano, Ceram. Eng. Sci. Proc. 9 (1988) 663.CrossRefGoogle Scholar
  15. 15.
    C. Ponthieu, Thèse de l'Université Paris VI (1990)Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. Ponthieu
    • 1
  • C. Marhic
    • 1
  • M. Lancin
    • 2
  • N. Herbots
    • 3
  1. 1.Physique des MatériauxCentre National de la Recherche ScientifiqueMeudon-cedexFrance
  2. 2.Physique CristallineInstitut des Materiaux de NantesNantes-cedex 03France
  3. 3.Department of Material Science and EngineeringMassachusetts Institute of TechnologyUSA

Personalised recommendations