Journal of Materials Science

, Volume 29, Issue 17, pp 4500–4504 | Cite as

A new polymeric route to silicon carbide and silicon nitride using elementary silicon as starting material

  • M. Deckwerth
  • C. Rüssel


Elementary silicon activated with copper was heated up in tetraethylene pentamine to 300°C. After drying in vacuum, an amorphous solid was obtained. Calcining this solid under argon at temperatures of up to 1200°C led to amorphous products, while at higher temperatures silicon carbide was obtained. Calcining in ammonia at temperatures of up to 1000°C also led to amorphous products. At calcination temperatures of 1200 and 1400°C crystalline silicon nitride and silicon nitride fibres respectively were obtained. The dependence of the fibre growth on the ammonia flow rate, as well as the occurrence of spherical iron-enriched particles terminating these fibres gave evidence for a vapour-liquid-solid mechanism being responsible for the fibre growth.


Silicon Carbide Nitride Calcination Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Szweda, A. Hendry and K. H. Jack, Proc. Brit. Ceram. Soc. 31 (1981) 107.Google Scholar
  2. 2.
    G. C. Wei, C. R. Kennedy and L. A. Harris, Amer. Ceram. Soc. Bull. 63 (1984) 1054.Google Scholar
  3. 3.
    J. S. Haggerty, A. Lightfoot, J. E. Ritter, S. V. Nair and P. Gennari, Ceram. Eng. Sci. Proc. 9 (1988) 1073.CrossRefGoogle Scholar
  4. 4.
    D. Seyferth, G. H. Wiseman, J. M. Schwark and Y.-F. Yu, Amer. Chem. Soc. 71 (1988) 143.Google Scholar
  5. 5.
    R. W. Rice, Amer. Chem. Soc. 62 (1983) 889.Google Scholar
  6. 6.
    B. E. Walker, R. W. Rice, P. F. Becher, B. A. Bender and W. S. Coblenz, Amer. Ceram. Soc. Bull. 62 (1983) 916.Google Scholar
  7. 7.
    E. G. Rochow, J. Amer. Chem. Soc. 67 (1945) 963.CrossRefGoogle Scholar
  8. 8.
    S. Yajima, J. Hayashi and M. Omori, Chem. Lett. (1975) 931.Google Scholar
  9. 9.
    T. Ishikawa, M. Shibuya and T. Yamamura, J. Mater. Sci. 25 (1990) 2809.CrossRefGoogle Scholar
  10. 10.
    D. Seyferth, G. H. Wiseman and C. Prud'Homme, J. Amer. Ceram. Soc. Commun. 66 (1983) C-13Google Scholar
  11. 11.
    Y. D. Blum, K. B. Schwartzu and R. M. Lain, J. Mater. Sci. 24 (1989) 1707.CrossRefGoogle Scholar
  12. 12.
    D. Seyferth and G. H. Wiseman, J. Amer Ceram. Soc. 67 (1984) C-132Google Scholar
  13. 13.
    R. M. Laineet, Y. D. Blum, A. Chow, R. Hamlin, K. B. Sckwartz and D. J. Rowecliffe, Polymer Preprints 28 (1987) 393.Google Scholar
  14. 14.
    C. L. Schilling, J. P. Wesson and T. C. Williams, Amer. Ceram. Soc. Bull. 62 (1983) 921.Google Scholar
  15. 15.
    B. Kanner, in “Silicon chemistry”, edited by E. R. Corey, (John Wiley & Sons, New York, 1988) p. 123.Google Scholar
  16. 16.
    G. D. Soraru, J. Mater. Sci. 25 (1990) 3886.CrossRefGoogle Scholar
  17. 17.
    C. L. Schilling, J. P. Wessel and T. C. Williams, J. Polym. Sci. Polym. Symp. 70 (1983) 121.CrossRefGoogle Scholar
  18. 18.
    D. Seyferth and G. H. Wiseman, J. Amer. Ceram. Soc. 67 (1984) C-132.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Deckwerth
    • 1
  • C. Rüssel
    • 1
  1. 1.Otto-Schott-InstitutUniversität JenaJenaGermany

Personalised recommendations