Advertisement

Journal of Materials Science

, Volume 29, Issue 17, pp 4447–4459 | Cite as

Model for precipitation in polycrystalline Cu-11.55 at %-Be-0.23 at %-Co

  • C. R. Houska
Papers
  • 64 Downloads

Abstract

The precipitate structure and matrix deformation were examined in a commercial Cu-11.55 at %-Be-0.23 at %-Co alloy by quantitative X-ray diffraction techniques. A model is proposed that is consistent with early electron microscopy results by Bonfield and Edwards [J. Mater. Sci.9 (1974) 398] and recent advances by Khachaturyan and Laughlin [Acta Metall. Mater.38 (1990) 1823]. Agreement was found for a precipitate model consisting of highly deformed versions of the equilibrium γ-phase. This is in accord with earlier results for γ″ and γ′ precipitates and is further generalized to include the GP zone for this alloy. Two states of deformation are required, i.e. one relatable to γ″ and the GP zone, with a second relatable to a continuous deformation which describes the rotation of the γ′ precipitate. The matrix becomes and remains severely deformed prior to and through the hardness maximum. Bragg-like matrix peaks become partitioned into three components: quasilines, static diffuse scattering and a residual Bragg peak. The so-called “arrowhead” scattering should be re-examined as a generalized form of Laue scattering, which includes a difference between the square of the scattering amplitudes for the precipitate and the matrix that it replaces.

Keywords

Precipitation Early Result Material Processing Acta Metall Bragg Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Guinier and P. Jacquet, Rev. Met. 41 (1944) 1.CrossRefGoogle Scholar
  2. 2.
    A. G. Guy, C. S. Barrett and R. F. Mehl, Trans. Met. Soc. AIME 175 (1948) 216.Google Scholar
  3. 3.
    W. Gruhl and G. Wassermann, Metall. 5 (1955) 141.Google Scholar
  4. 4.
    A. H. Geisler, J. H. Mallery and F. E. Steigert, Trans. Met. Soc. AIME 194 (1952) 307.Google Scholar
  5. 5.
    Yu. D. Tyapkin and A. V. Gavrilova, Sov. Phys. (Crystallog.) 9 (1964) 166.Google Scholar
  6. 6.
    Yu. D. Tyapkin, ibid. 10 (1966) 418.Google Scholar
  7. 7.
    A. Saulnier and P. Mirand, Rev. Met. 57 (1960) 91.Google Scholar
  8. 8.
    K. Tanaka, M. Mannami and K. Izumi, Acta Metall. 11 (1963) 79.CrossRefGoogle Scholar
  9. 9.
    R. J. Price and A. Kelly, ibid. 11 (1963) 915.CrossRefGoogle Scholar
  10. 10.
    W. K. Armitage, PhD Thesis, University of Leeds, Leeds, UK (1963).Google Scholar
  11. 11.
    M. Nakagawa, Jpn J. Appl. Phys. 4 (1965) 760.CrossRefGoogle Scholar
  12. 12.
    I. Pfeiffer, Z. Metallk. 56 (1965) 465.Google Scholar
  13. 13.
    A. M. Elistratov and L. M. Sorokin, Sov. Phys. (Solid State) 6 (1965) 24.Google Scholar
  14. 14.
    L. E. Tanner, Phil. Mag. 14 (1966) 111.CrossRefGoogle Scholar
  15. 15.
    L. M. Sorokin, Sov. Phys. (Solid State) 8 (1967) 2820.Google Scholar
  16. 16.
    Idem., ibid., Sov. Phys. (Solid State) 9 (1967) 1353.Google Scholar
  17. 17.
    A. V. Gavrilova, Yu. D. Tyapkin and M. P. Usikov, Sov. Phys. (Doklady) 12 (1968) 970.Google Scholar
  18. 18.
    Z. Henmi and T. Nagai, Trans. Jpn Inst. Met. 10 (1969) 166.CrossRefGoogle Scholar
  19. 19.
    P. Wilkes and M. M. Jackson, Met. Sci. J. 3 (1969) 130.CrossRefGoogle Scholar
  20. 20.
    V. A. Phillips and L. E. Tanner, Acta Metall. 21 (1973) 441.CrossRefGoogle Scholar
  21. 21.
    S. Yamamoto, M. Matsui and Y. Murakami, Trans. Jpn Inst. Met. 12 (1971) 159.CrossRefGoogle Scholar
  22. 22.
    K. Shimizu, Y. Mikami, H. Mitani and K. Otsuka, ibid. 12 (1971) 206.CrossRefGoogle Scholar
  23. 23.
    Y. Murakami, H. Yoshida and S. Yamamoto, Trans. Jpn Inst. Met. 9 (1968) 11.CrossRefGoogle Scholar
  24. 24.
    A. R. Entwisle and J. K. Wynn, J. Inst. Metals 89 (1960) 24.Google Scholar
  25. 25.
    W. Bonfield, Trans. Met. Soc. AIME 239 (1967) 99.Google Scholar
  26. 26.
    W. Bonfield and B. C. Edwards, J. Mater. Sci. 9 (1974) 398, 409, 415.CrossRefGoogle Scholar
  27. 27.
    R. J. Rioja and D. E. Laughlin, Acta Metall. 28 (1980) 1301.CrossRefGoogle Scholar
  28. 28.
    A. G. Khachaturyan and D. E. Laughlin, Acta Metall Mater. 38 (1990) 1823.CrossRefGoogle Scholar
  29. 29.
    B. He, PhD Thesis, Virginia Polytechnic Institute and State University (1992).Google Scholar
  30. 30.
    C. H. Wu, PhD Thesis, Virginia Polytechnic Institute and State University (1993).Google Scholar
  31. 31.
    C. R. Houska, Acta Cryst. A49 (1993) 771.CrossRefGoogle Scholar
  32. 32.
    B. D. Cullity, “Elements of X-ray diffraction” (Addison-Wesley, Reading, MA, 1978).Google Scholar
  33. 33.
    B. E. Warren, “X-ray diffraction” (Addison-Wesley, Reading, MA, 1969).Google Scholar
  34. 34.
    J. E. Lee, D. M. Barnett and H. I. Aaronson, Met. Trans. A 8A (1977) 963.CrossRefGoogle Scholar
  35. 35.
    M. A. Krivoglaz, “Theory of X-ray and thermal-neutron scattering by real crystals” (Plenum, NY, 1969).Google Scholar
  36. 36.
    H. W. King, J. Mater. Sci. 1 (1966) 79.CrossRefGoogle Scholar
  37. 37.
    G. Simmons and H. Wang, “Single crystal elastic constants and calculated aggregate properties: A handbook” (MIT Press, Cambridge, MA, 1971).Google Scholar
  38. 38.
    D. J. Chakrabarti, D. E. Laughlin and L. E. Tanner, Bull. Alloy Phase Dia. 8 (1987) 269.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. R. Houska
    • 1
  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations