Advertisement

Journal of Materials Science

, Volume 29, Issue 17, pp 4431–4435 | Cite as

The stress dependence of Barkhausen noise in Fe81B13.5Si3.5C2 Metglas

  • H. C. Kim
  • Dong Young Kim
  • C. G. Kim
Papers

Abstract

The Barkhausen noise (BN) profile of Fe81B13.5Si3.5C2 Metglas changes from single to double peaks with applied tensile stress. The second harmonics during the magnetization process under various stresses confirm that the single and double peaks on the BN profiles can be attributed to domain nucleation/annihilation. The variation of the initial permeability with tensile stress indicates that the volume fraction of longitudinal domains along the stress direction increased up to a stress of 20 MPa (stage I) and then it remained constant with further stressing, v∥ (σ) ≈ 1 (stage II). The total BN activity during a half (B-H) loop with tensile stress, transient also at about 20 MPa, can be characterized by a (BN)tot ∞ eβσrelationship, where the exponents are β1 = 1.761 × 10−2 and β2 = 1.758 × 10−3 for stages I and II, respectively. An analysis of (BN)tot in stage II showed that the number of domains involved in the domain nucleation/annihilation is proportional to σ1/2.

Keywords

Polymer Permeability Tensile Stress Material Processing Double Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. G. Hwang and H. C. Kim, J. Phys. D. 21 (1988) 1807.CrossRefGoogle Scholar
  2. 2.
    H. C. Kim, K. H. Lee, C. G. Kim and D. G. Hwang, J. Appl. Phys. 72 (1992) 3626.CrossRefGoogle Scholar
  3. 3.
    G. Bertotti, F. Fiorillo and M. P. Sassi, J. Magn. Magn. Mater. 23 (1981) 136.CrossRefGoogle Scholar
  4. 4.
    G. Bertotti, F. Fiorillo and A. M. Rietto, IEEE Trans. Magn. 20 (1984) 1481.CrossRefGoogle Scholar
  5. 5.
    C. Jagadish, L. Clapham and D. L. Atherton, ibid. 26 (1990) 1160.CrossRefGoogle Scholar
  6. 6.
    Idem, NDT Int. 22 (1989) 297.Google Scholar
  7. 7.
    A. Mitra and M. Vázquez, J. Magn. Magn. Mater. 87 (1990) 130.CrossRefGoogle Scholar
  8. 8.
    M. Vázquez, W. Fernengel and H. Kronmüller, Phys. Status solidi (a) 80 (1983) 195.CrossRefGoogle Scholar
  9. 9.
    H. Chiriac and I. Gobotaru, J. Magn. Magn. Mater. 124 (1993) 277.CrossRefGoogle Scholar
  10. 10.
    J. Kameda and R. Ranjan, Acta Metall. 35 (1987) 1515.CrossRefGoogle Scholar
  11. 11.
    R. Rautioaho and P. Karjalinen, J. Magn. Magn. Mater. 61 (1986) 183.CrossRefGoogle Scholar
  12. 12.
    A. García-Arribas and J. M. Barandiarán, J. Appl. Phys. 71 (1992) 3047.CrossRefGoogle Scholar
  13. 13.
    B. D. Cullity “Introduction to magnetic materials” (Addison-Wesley, New York, 1972) p. 287.Google Scholar
  14. 14.
    J. D. Livingston and W. G. Morris, IEEE Trans. Magn. 17 (1981) 2624.CrossRefGoogle Scholar
  15. 15.
    H. Pfüfzner, J. Appl. Phys. 52 (1981) 3708.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. C. Kim
    • 1
  • Dong Young Kim
    • 1
  • C. G. Kim
    • 2
  1. 1.Physics DepartmentThe Korea Advanced Institute of Science and TechnologyTaejonKorea
  2. 2.Magnetics LaboratoryKorea Research Institute of Standards and ScienceTaejonKorea

Personalised recommendations