Advertisement

Journal of Materials Science

, Volume 29, Issue 17, pp 4420–4430 | Cite as

The surface chemistry of silicon nitride powder in the presence of dissolved ions

  • V. A. Hackley
  • S. G. Malghan
Papers

Abstract

Colloidal processing of silicon nitride (Si3N4) powders depends largely on the control of reactions at the solid-solution interface. The role of dissolved ions in the surface chemistry of Si3N4 powders has been investigated, and the implications of these results for the effects of impurities, contaminants and additives in processing are discussed. The interaction of ions at the solid-solution interface was characterized by particle electrokinetic behaviour determined from electroacoustic measurements in moderately concentrated suspensions. Ions were classified according to chemical similarity and surface specificity. Specific adsorption was inferred from the movement of the isoelectric point relative to the endemic “native” value. Most simple univalent electrolytes behaved indifferently towards the Si3N4 surface, with the exception of fluoride which specifically adsorbed and may have formed a strong complex with surface silicon sites. The alkaline-earth cations exhibited a similar weak specificity. In the presence of hydrolysable transition metal cations, powder surface chemistry was controlled by the adsorption of hydroxy metal complexes and by the solubility of a surface-precipitated metal hydroxide phase. Oxo anions, such as sulphate and carbonate, adsorbed specifically on the Si3N4 surface, but the interactions were weaker than previously observed on metal oxide surfaces.

Keywords

Surface Chemistry Silicon Nitride Metal Hydroxide Transition Metal Cation Metal Oxide Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Greil, R. Nitzsche, H. Friedrich and W. Hermel, J. Europ. Ceram. Soc. 7 (1991) 353.CrossRefGoogle Scholar
  2. 2.
    V. A. Hackley and S. G. Malghan, Mater. Chem. Phys. 36 (1993) 112.CrossRefGoogle Scholar
  3. 3.
    K. Negita, J. Mater. Sci. Lett. 4 (1985) 755.CrossRefGoogle Scholar
  4. 4.
    T. M. Shaw and B. A. Pethica, J. Amer. Ceram. Soc. 69 (1986) 88.CrossRefGoogle Scholar
  5. 5.
    M. Kulig and P. Greil, J. Mater. Sci. 26 (1991) 216.CrossRefGoogle Scholar
  6. 6.
    V. A. Hackley and S. G. Malghan, Polymer Preprints 34 (1993) 1024.Google Scholar
  7. 7.
    G. Busca, V. Lorenzelli, G. Porcile, M. I. Baraton, P. Quintard and R. Marchand, Mater. Chem. Phys. 14 (1986) 123.CrossRefGoogle Scholar
  8. 8.
    L. Bergstrom and E. Bostedt, Colloids Surf. 49 (1990) 183.CrossRefGoogle Scholar
  9. 9.
    S. I. Raider, R. Flitsch, J. A. Aboaf and W. A. Pliskin, J. Electrochem. Soc. 123 (1976) 560.CrossRefGoogle Scholar
  10. 10.
    P. S. Wang, S. M. Hsu, S. G. Malghan and T. N. Wittberg, J. Mater. Sci. 26 (1991) 3249.CrossRefGoogle Scholar
  11. 11.
    P. K. Whitman and D. L. Feke, Adv. Ceram. Mater. 1 (1986) 366.CrossRefGoogle Scholar
  12. 12.
    R. W. O'Brien, B. R. Midmore, A. Lamb and R. J. Hunter, Faraday Discuss. Chem. Soc. 90 (1990) 301.CrossRefGoogle Scholar
  13. 13.
    V. A. Hackley, R. S. Premachandran and S. G. Malghan, in “Characterization techniques for the solid-solution interface”, edited by J. H. Adair, J. A. Casey and S. Venigalla (American Ceramic Society, Westerville, Ohio, 1993) p. 141.Google Scholar
  14. 14.
    A. J. Babchin, R. S. Chow and R. P. Sawatzky, Adv. Colloid Interface Sci. 30 (1989) 111.CrossRefGoogle Scholar
  15. 15.
    R. J. Hunter, “Zeta potential in colloid science” (Academic, New York, 1981).Google Scholar
  16. 16.
    V. A. Hackley and S. G. Malghan, in “Electroacoustics for characterization of particulates and suspensions”, edited by S. G. Malghan, NIST Special Publication No. 856 (USDC Technology Administration, Gaithersburg, MD, 1993) p. 161.Google Scholar
  17. 17.
    J. Lyklema, in “Adsorption from solution at the solid/liquid interface” (Academic Press, New York, 1983) p. 223.Google Scholar
  18. 18.
    L. Sigg and W. Stumm, Colloids Surf. 2 (1981) 101.CrossRefGoogle Scholar
  19. 19.
    P. W. Schindler, in “Adsorption of inorganics at solid-liquid interfaces”, edited by M. A. Anderson and A. J. Rubin (Ann Arbor Science, Ann Arbor, MI, 1981) p. 1.Google Scholar
  20. 20.
    G. Wotting and G. Ziegler, Interceram. 3 (1986) 57.Google Scholar
  21. 21.
    M. Mitomo, in “Silicon nitride-1” (Elsevier, London, 1990) p. 1.Google Scholar
  22. 22.
    D. L. Dugger, J. H. Stanton, B. N. Irby, B. L. McConnell, W. W. Cummings and R. W. Maatman, J. Phys. Chem. 68 (1964) 757.CrossRefGoogle Scholar
  23. 23.
    Th. F. Tadros and J. Lyklema, J. Electroanal. Chem. 22 (1969) 1.CrossRefGoogle Scholar
  24. 24.
    M. C. Fuerstenau and B. R. Palmer, in “Flotation” (AIME, New York, 1976) p. 148.Google Scholar
  25. 25.
    C. F. Baes, Jr and R. E. Mesmer, in “The hydrolysis of cations” (John Wiley & Sons, New York, 1976).Google Scholar
  26. 26.
    E. Liden, L. Bergstrom, M. Persson and R. Carlsson, J. Europ. Ceram. Soc. 7 (1991) 361.CrossRefGoogle Scholar
  27. 27.
    P. W. Schindler, B. Furst, R. Dick and P. U. Wolf, J. Colloid Interface Sci. 55 (1976) 469.CrossRefGoogle Scholar
  28. 28.
    R. O. James and T. W. Healy, J. Colloid Interface Sci. 40 (1972) 53.CrossRefGoogle Scholar
  29. 29.
    G. A. Parks and P. L. Debruyn, J. Phys. Chem. 66 (1962) 967.CrossRefGoogle Scholar
  30. 30.
    G. A. Parks, Chem. Rev. 65 (1965) 177.CrossRefGoogle Scholar
  31. 31.
    R. L. Parfitt and R. St. C. Smart, J. Chem. Soc. Faraday Trans. 1 73 (1977) 796.CrossRefGoogle Scholar
  32. 32.
    F. J. Hingston, in “Adsorption of inorganics at solid-liquid interfaces”, edited by M. A. Anderson and A. J. Rubin (Ann Arbor Science, Ann Arbor, MI, 1981) p. 51.Google Scholar
  33. 33.
    M. I. Tejedor-Tejedor and M. A. Anderson, Langmuir 6 (1990) 602.CrossRefGoogle Scholar
  34. 34.
    W. Stumm and J. J. Morgan, “Aquatic chemistry” (John Wiley & Sons, New York, 1981) p. 639.Google Scholar
  35. 35.
    W. A. Zeltner and M. A. Anderson, Langmuir 4 (1988) 469.CrossRefGoogle Scholar
  36. 36.
    J. D. Russell, E. Paterson, A. R. Fraser and V. C. Farmer, J. Chem. Soc. Faraday Trans. I (Part 2) 71 (1975) 1623.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • V. A. Hackley
    • 1
  • S. G. Malghan
    • 1
  1. 1.Ceramics DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations