Advertisement

Journal of Materials Science

, Volume 29, Issue 17, pp 4415–4419 | Cite as

Ultrasonic evaluation of elastic parameters of sintered powder compacts

  • A. K. Maitra
  • K. K. Phani
Papers

Abstract

The variation of elastic moduli, M, of sintered powder compacts with porosity, p, has been analysed in terms of an equation M = M0 (1−p)n, where M0 is the elastic modulus of non-porous material and n is a constant. The variation of ultrasonic velocities has also been described in terms of a similar equation derived from the relations given by physical acoustics theory. It has been shown that the parameter n is related to a stress concentration factor around pores in the material and is dependent on pore geometry and its orientation in the material. The observed variation in moduli and velocities with porosity has been compared with the theoretically predicted values based on self-consistent oblate spheroidal theory.

Keywords

Polymer Porosity Elastic Modulus Powder Compact Stress Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Papadakis and B. W. Patersen, Mater. Eval. 37 (1979) 76.Google Scholar
  2. 2.
    R. M. Arons and D. S. Kupperman, ibid. 40 (1982) 1076.Google Scholar
  3. 3.
    J. P. Panakkal, H. Willems and W. Arnold, J. Mater. Sci. 25 (1990) 1397.CrossRefGoogle Scholar
  4. 4.
    J. P. Panakkal, Br. J. NDT 34 (1992) 529.Google Scholar
  5. 5.
    D. J. Roth, D. B. Stang, S. M. Swickard and M. R. Deguire, NASA Technical Memorandum 102501, July 1990, p 3.Google Scholar
  6. 6.
    R. W. Rice, in “Treatise on Material Science and Technology”, Vol. 11, edited by R. K. MacCrone (Academic Press, New York, 1977) p. 199.Google Scholar
  7. 7.
    G. Ondracek, Z. Werkstofftech. 9 (1978) 31.CrossRefGoogle Scholar
  8. 8.
    J. C. Wang, J. Mater. Sci. 19 (1984) 809.CrossRefGoogle Scholar
  9. 9.
    C. M. Sayers and R. L. Smith, Ultrasonics 19 (1982) 201.CrossRefGoogle Scholar
  10. 10.
    Z. Hashin, J. Appl. Mech. 29 (1962) 143.CrossRefGoogle Scholar
  11. 11.
    D. P. H. Hasselman, J. Am. Ceram. Soc. 45 (1962) 452.CrossRefGoogle Scholar
  12. 12.
    I. Soroka and P. J. Sereda, ibid. 51 (1968) 337.CrossRefGoogle Scholar
  13. 13.
    K. K. Phani, Am. Ceram. Soc. Bull. 65 (1986) 1584.Google Scholar
  14. 14.
    D. Lewis III, ibid. 57 (1978) 434.Google Scholar
  15. 15.
    E. A. Dean, J. Am. Ceram. Soc. 66 (1983) 847.CrossRefGoogle Scholar
  16. 16.
    T. T. Wu, Int. J. Solids Struct. 3 (1966) 1.CrossRefGoogle Scholar
  17. 17.
    R. C. Rossi, J. Am. Ceram. Soc. 51 (1968) 433.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. K. Maitra
    • 1
  • K. K. Phani
    • 1
  1. 1.Central Glass and Ceramic Research InstituteCalcuttaIndia

Personalised recommendations