Journal of Materials Science

, Volume 30, Issue 6, pp 1621–1625 | Cite as

Powder diffraction investigations of plasma sprayed zirconia

  • B. Bondars
  • G. Heidemane
  • J. Grabis
  • K. Laschke
  • H. Boysen
  • J. Schneider
  • F. Frey


The crystallographic and microstructural parameters of plasma sprayed pure zirconia powders were studied by X-ray and neutron powder diffraction. A significant influence of the flow rate of the quenching gas on the phase composition (the tetragonal to monoclinic ratio varied between 0.6 and 3.5) and on the micro-structure was observed, while structural parameters of both phases of all investigated samples remained essentially unchanged and were close to those reported in the literature. These results do not support the concept of a critical particle size effect as a stabilizing factor for the tetragonal phase. A transition from a tetragonal to a monoclinic phase was observed without any measurable change in the crystallite sizes by heating at 845‡C. A very high background on the neutron powder patterns may have been caused by the presence of pores in the samples.


Zirconia Crystallite Size Phase Composition Powder Diffraction Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Garvie, J. Phys. Chem. 82 (1978) 218.CrossRefGoogle Scholar
  2. 2.
    R. Srinivasan, L. Rice and B. H. Davis, J. Amer. Ceram. Soc. 73 (1990) 3528.CrossRefGoogle Scholar
  3. 3.
    E. D. Morgan, Comm. Amer. Ceram. Soc. 67 (1984) 204.CrossRefGoogle Scholar
  4. 4.
    “Advances in ceramics, vol. 12, science and technology of ZrO2, II”, edited by N. Claussen, M. Rühle and A.H. Heuer (The American Ceramic Society, Columbus, OH, 1984).Google Scholar
  5. 5.
    G. Teufer, Acta Crystallog. 15 (1962) 1187.CrossRefGoogle Scholar
  6. 6.
    J. D. McCullough and K. N. Trueblood, Acta Crystallog. 12 (1959) 507.CrossRefGoogle Scholar
  7. 7.
    D. K. Smith and H. W. Newkirk, Acta Crystallog. 18 (1965) 983.CrossRefGoogle Scholar
  8. 8.
    C. J. Howard, R. J. Hill and B. E. Reichert, Acta Crystallog. B44 (1988) 116.CrossRefGoogle Scholar
  9. 9.
    L. Lutterotti and P. Scardi, J. Appl. Crystallog. 23 (1990) 246.CrossRefGoogle Scholar
  10. 10.
    F. Frey, H. Boysen and T. Vogt, Acta Crystallog. B46 (1990) 724.CrossRefGoogle Scholar
  11. 11.
    H. Boysen, F. Frey and T. Vogt, Acta Crystallog. B47 (1991) 881.CrossRefGoogle Scholar
  12. 12.
    j. p. grabis, j. k. vaivads, A. A. bernans and t. n. millers, Izv. AN Latv. SSR, Ser. khim. 131 (1981) (in Russian).Google Scholar
  13. 13.
    I. V. Uvarova, D. S. Arensburger, G. A. Bokan, Z. A. Vasilevskaia and Z. A. Vitijaz, Poroshkovaja metalurgija 219 (1981) 60 (in Russian).Google Scholar
  14. 14.
    “GSAS generalized structure analysis”, edited by A. C. LARSON and R. B. VON DREELE (Los Alamos National Laboratory, 1988).Google Scholar
  15. 15.
    P. Thompson, D. E. Cox and J. B. Hastings, J. Appl. Crystallog. 20 (1987) 79.CrossRefGoogle Scholar
  16. 16.
    W. I. F. David, J. Appl. Crystallog. 19 (1986) 63.CrossRefGoogle Scholar
  17. 17.
    G. Caglioti, A. Paoletti and F. P. Ricci, Nucl. Instrum. Methods 35 (1958) 223.CrossRefGoogle Scholar
  18. 18.
    Th. De Keijser, J. I. Langford, E. J. Mittemeijer and A. B. P. Vogels, J. Appl. Crystallog. 15 (1982) 308.CrossRefGoogle Scholar
  19. 19.
    J. I. Langford, J. Appl. Crystallog. 11 (1978) 10.CrossRefGoogle Scholar
  20. 20.
    B. E. Warren and B. L. Averbach, J. Appl. Phys. 2 (1950) 89.Google Scholar
  21. 21.
    P. A. Evans, R. Stivens and J. G. P. Binner, Br. Ceram. Trans. J. 83 (1984) 39.Google Scholar
  22. 22.
    J. Adam and M. D. Rogers, Acta Crystallog. 12 (1959) 951.CrossRefGoogle Scholar
  23. 23.
    R. Srinivasan, B. H. Davis, B. H. Cavin and C. R. Hubbard, J. Amer. Ceram. Soc. 75 (1992) 1217.CrossRefGoogle Scholar
  24. 24.
    w. lengauer and p. ettmayer, High temperature — high pressure (1990) 13.Google Scholar
  25. 25.
    H. Boysen, J. Appl. Crystallog. 18 (1985) 320.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • B. Bondars
    • 1
  • G. Heidemane
    • 1
  • J. Grabis
    • 1
  • K. Laschke
    • 2
  • H. Boysen
    • 2
  • J. Schneider
    • 2
  • F. Frey
    • 2
  1. 1.Latvijas Zinatnu Akademijas Neorganiskas Kimijas InstitutsSalaspilsLatvia
  2. 2.Institut für Kristallographie, UniversitÄtMünchenGermany

Personalised recommendations