Journal of Materials Science

, Volume 30, Issue 6, pp 1601–1608 | Cite as

Effect of morphology on the behaviour of ternary composites of polypropylene with inorganic fillers and elastomer inclusions

Part I Tensile yield strength
  • J. Jancar
  • A. T. Dibenedetto


The effects of phase morphology, interfacial adhesion, rigid filler particle shape and elastomer volume fraction on the tensile yield strength of polypropylene (PP) filled with inorganic filler (CaCO3 or Mg(OH)2) and ethylene-propylene elastomer (EPR) were investigated. Separation of the filler and elastomer particles was achieved using maleic-anhydride-grafted PP (MPP) to enhance the filler-matrix adhesion. Encapsulation of the rigid filler by the elastomer was achieved using maleic-anhydride-grafted EPR (MEPR) to increase the filler-elastomer adhesion. The two limiting morphologies differ significantly in mechanical properties under tensile loading at the same material composition. Elastomer particles separately dispersed in the matrix enhance the shear banding in the bulk matrix which prevents the crazes growing from the filler surface from becoming unstable and, thus, increases the ductility of the material. Encapsulation by an elastomer layer on the filler surface relieves triaxial stresses at the filler surface, changing the major local failure mechanism from crazing to shear yielding and, hence, increasing the ductility of the material. Increase of the elastomer volume fraction also causes, in both cases, an increase in matrix ductility. Composite models are used to predict upper and lower limits of yield strength (σy) for the two limiting morphologies over an interval of elastomer volume fractions (Ve) from 0 to 0.2 at a constant filler loading of 30 vol.% and over a filler volume fraction from 0 to 0.4 at a constant EPR content in the matrix. Satisfactory agreement was found between the experimental data and theoretical predictions.


Ductility Encapsulation Shear Banding Triaxial Stress Inorganic Filler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Jancar and A. T. Dibenedetto, in “Proceedings of the Thirty-fourth IUPAC International Symposium on Macromolecules”, Prague, July 12–17, 1992 (VSP Publishers, 1993) p. 399.Google Scholar
  2. 2.
    B. Pukanszky, J. Kolarik, F. Lednicky and F. Tudos, Polym. Compos. 10 (1989) 491.Google Scholar
  3. 3.
    J. Kolarik, J. Velek, G. L. Agrawal and I. Fortelny, Polym. Compos. 7 (1986) 472.CrossRefGoogle Scholar
  4. 4.
    J. Kolarik, F. Lednicky and B. Pukanszky, in “Proceedings of the Sixth International Conference on Composite Materials” (Elsevier, London, 1987) p. 452.Google Scholar
  5. 5.
    J. Kolarik, F. Lednicky, J. Jancar and B. Pukanszky, Polym. Commun. 30 (1990) 201.Google Scholar
  6. 6.
    J. Jancar and A. T. Dibenedetto, in “Proceedings of the Fifty-first ANTEC SPE”, New Orleans, May 9–12, 1993, Vol. II (SPE, Brookfield) p. 1698.Google Scholar
  7. 7.
    Idem. and A. T. Dibenedetto, J. Mater. Sci. 29 (1994) 4651.CrossRefGoogle Scholar
  8. 8.
    W.-Y. Chiang, W.-D. Yang and B. Pukanszky, Polym. Eng. Sci. 32 (1992) 641.CrossRefGoogle Scholar
  9. 9.
    J. E. Stamhuis, Polym. Compos. 5 (1984) 202.CrossRefGoogle Scholar
  10. 10.
    I. Rusznak, G. Bertalan, P. Anna and G. Marosi, Plaste Kautsch. 32 (1985) 254.Google Scholar
  11. 11.
    P. R. Hornsby and C. Watson, Plast. Rubb. Proc. Appl. 6 (1986) 169.Google Scholar
  12. 12.
    L. R. Holloway, “Fillers”, in Proceedings of the Joint Conference, Plastic and Rubber, Institute and British Plastic Federation, March 1986 (Elsevier, London, 1986) p. 22/1.Google Scholar
  13. 13.
    K. Vesely, J. Rychly, M. Kummer and J. Jancar, Polym. Degr. Stab. 30 (1990) 101.CrossRefGoogle Scholar
  14. 14.
    J. Rychly, K. Vesely, E. Gal, M. Kummer, J. Jancar and L. Rychla, Polym. Degr. StaB. 30 (1990) 57.CrossRefGoogle Scholar
  15. 15.
    J. Jancar and J. Kucera, Polym. Eng. Sci. 30 (1990) 707.CrossRefGoogle Scholar
  16. 16.
    Idem., ibid. 30 (1990) 714.CrossRefGoogle Scholar
  17. 17.
    J. Jancar, A. Dianselmo and A. T. Dibenedetto, Polym. Eng. Sci. 32 (1992) 1394.CrossRefGoogle Scholar
  18. 18.
    S. D. Sjoerdsma, Polym. Commun. 30 (1989) 106.Google Scholar
  19. 19.
    L. Nicolais and M. Narkis, Polym. Eng. Sci. 11 (1971) 194.CrossRefGoogle Scholar
  20. 20.
    J. Jancar, A. Dianselmo and A. T. Dibenedetto, Polymer 34 (1993) 1684.CrossRefGoogle Scholar
  21. 21.
    V. A. Matonis and N. C. Small, Polym. Eng. Sci. 9 (1969) 90.CrossRefGoogle Scholar
  22. 22.
    V. A. Matonis, Polym. Eng. Sci. 9 (1969) 100.CrossRefGoogle Scholar
  23. 23.
    L. J. Broutman and B. D. Agarwal, Polym. Eng. Sci. 14 (1974) 581.CrossRefGoogle Scholar
  24. 24.
    S. Sahu and L. J. Broutman, Polym. Eng. Sci. 12 (1972) 91.CrossRefGoogle Scholar
  25. 25.
    C. B. Bucknall, “Toughened Plastics” (Applied Science Publishers, London, 1977) p. 145.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Jancar
    • 1
  • A. T. Dibenedetto
    • 2
  1. 1.Faculty of ChemistryTechnical University BrnoBrnoCzech Republic
  2. 2.Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations