Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1595–1600 | Cite as

Surface thermodynamic analysis of cleaned silicoaluminate glass fibres

  • M. C. Bautista
  • J. Rubio
  • J. L. Oteo
Papers

Abstract

Inverse gas chromatography has been used to measure the surface adsorption of alkane probes on cleaned silicoaluminate glass fibres. The thermodynamic variables (enthalpy, δH A ; entropy, δS A ; free energy, δG A ) and the dispersive component of the surface free energy (γ S D ) have been evaluated by the measurement of specific retention volumes of the alkanes on the silicoaluminate glass fibres. The effectiveness of the acetone extraction procedure and the thermal treatment for the cleaning of the samples was also evaluated. The London (dispersive) component of the surface free energy has been used as a measurement of surface contamination by comparing the results for the washed samples and thermal treated samples.

Keywords

Entropy Enthalpy Free Energy Alkane Extraction Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ishida and J. L. Koenig, in Proceedings of the 1st International Conference on Composites Interfaces (ICCI-I), Cleveland, Ohio, May 1986, edited by H. Ishida and J. L. Koenig (North Holland, New York, 1986) p. 392.Google Scholar
  2. 2.
    D. H. Kaeble, J. Appl. Polym. Sci. 18 (1974) 1869.CrossRefGoogle Scholar
  3. 3.
    G. M. Dorris and D. G. Gray, J. Colloid. Interface Sci. 71 (1979) 93.CrossRefGoogle Scholar
  4. 4.
    Idem., ibid. 77 (1980) 353.CrossRefGoogle Scholar
  5. 5.
    S. Katz and D. G. Gray, J. Colloid. Interface Sci. 82 (1981) 318.CrossRefGoogle Scholar
  6. 6.
    F. M. Nelsen and F. T. Eggerstsen, Ann. Chem. 30 (1958) 1387.CrossRefGoogle Scholar
  7. 7.
    E. F. Meyer, J. Chem. Educ. 57 (1980) 120.CrossRefGoogle Scholar
  8. 8.
    D. L. Wood and E. M. Ravinovich, Appl. Spect. 43 (1989) 263.CrossRefGoogle Scholar
  9. 9.
    P. J. C. Chappell and D. R. Williams, J. Colloid Inter. Sci. 128 (1989) 450.CrossRefGoogle Scholar
  10. 10.
    J. H. De Boer, in “The dynamical character of adsorption” (Oxford University Press, London, 1953) p. 115.Google Scholar
  11. 11.
    A. Vidal, E. Papirer, W. M. Jiao and J. B. Donnet, Chromatographia 23 (1987) 121.CrossRefGoogle Scholar
  12. 12.
    A. V. Kiselev and Y. I. Yashin, “Gas adsorption chromatography” (Plenum Press, New York, 1969).CrossRefGoogle Scholar
  13. 13.
    S. K. Milonjic and M. M. Kopecni, Chromatographia 19 (1984) 342.CrossRefGoogle Scholar
  14. 14.
    F. M. Fowkes, Ind. Eng. Chem. 56 (1964) 40.CrossRefGoogle Scholar
  15. 15.
    K. Tsutsumi and T. Ohsuga, Colloid Polym. Sci. 268 (1990) 38.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. C. Bautista
    • 1
  • J. Rubio
    • 1
  • J. L. Oteo
    • 1
  1. 1.Instituto de Cerámica y Vidrio (C.S.I.C.)Arganda del ReySpain

Personalised recommendations