Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1570–1576 | Cite as

Pitch-based carbon fibres derived from thermoset fibres oxidized with Cl2 containing air

  • T. Tomioka
  • Y. Arai
  • T. Hamada
Papers

Abstract

Mesophase pitch-based carbon fibres thermoset with Cl2 containing air were studied for their microstructures and physical properties. Carbon fibres thermoset with Cl2 containing air and heat-treated at 2000‡C (Cl22000) possessed slightly smaller mean sizes of crystallites Lc(0 0 2)s, lower densities, lower tensile moduli of elasticity, and higher tensile strengths than those thermoset with air. X-ray diffraction measurements revealed a somewhat lower degree of preferred orientation of a carbon fibre which was thermoset with Cl2 containing air. The Cl2 thermosetting partly disordered the periodic arrangement of crystallites and reduced the crystallite size Lc(0 0 2) of a carbon fibre heat-treated at a lower temperature. A strong temperature dependence of resistivity was shown for Cl2800, suggesting much disorder in its microstructure due to the Cl2 thermosetting, and Cl21000 and Cl21200, respectively showed specific temperature dependencies of resistivities.

Keywords

Polymer Microstructure Tensile Strength Crystallite Size Carbon Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. D. Edie, N. K. Fox, B. C. Barnett and C. C. Fain, Carbon 24(4) (1986) 477.CrossRefGoogle Scholar
  2. 2.
    A. A. Bright and L. S. Singer, Carbon 17 (1979) 59.CrossRefGoogle Scholar
  3. 3.
    S. Otani, Mol. Cryst. Liq. Cryst. 63 (1981) 249.CrossRefGoogle Scholar
  4. 4.
    D. S. Kurtz, MSc thesis, Rensselaer Polytechnic Institute, Troy, New York, USA (1983).Google Scholar
  5. 5.
    T. Hamada, T. Nishida, M. Furuyama and T. Tomioka, Carbon 26(6) (1988) 837.CrossRefGoogle Scholar
  6. 6.
    Y. Arai, T. Iwashita and T. Tomioka, Preprint for the twenty-second autumn conference of Chemical Engineering Society of Japan, Tokyo (1989) p. 303 (in Japanese).Google Scholar
  7. 7.
    Y. Arai, T. Iwashita and T Tomioka, Preprint for the sixteenth annual meeting of Carbon Society of Japan, Tokyo (1989) p. 174 (in Japanese).Google Scholar
  8. 8.
    Y. Arai, T. Iwashita and T.Tomioka, Preprint for the International Symposium on Carbon, Tsukuba, Japan (1990) p. 782.Google Scholar
  9. 9.
    Y. Arai, T. tomioka, Preprint for the eighteenth annual meeting of Carbon Society of Japan, Saitama (1991) p. 76 (in Japanese).Google Scholar
  10. 10.
    T. Hamada, M. Furuyama, T. Tomioka and M. Endo, J. Mater. Res. 7(9) (1992) 2612.CrossRefGoogle Scholar
  11. 11.
    T. Hamada and T. Tomioka, Carbon 31(1) (1993) 235.CrossRefGoogle Scholar
  12. 12.
    T. Hamada, K. Kawasaki, M. Furuyama and T. Tomioka, J. Phys. Soc. Japan 59(7) (1990) 2468.CrossRefGoogle Scholar
  13. 13.
    T. Hamada, PhD thesis, Tokyo University, Tokyo (1990) (in Japanese).Google Scholar
  14. 14.
    JIS (Japan Industrial Standard) R 7601-1980; Testing Methods for Carbon Fibers (1980) (in Japanese).Google Scholar
  15. 15.
    T. Hamada, M. Furuyama, Y. Sajiki, T. Tomioka and M. Endo, J. Mater. Res. 5(3) (1990) 570.CrossRefGoogle Scholar
  16. 16.
    T. Hamada, T. Nishida, Y. Sajiki, M. Matsumoto and M. Endo, J. Mater. Res. 2(6) (1987) 850.CrossRefGoogle Scholar
  17. 17.
    R. J. Price, Phihs. Mag. 12 (1965) 564.Google Scholar
  18. 18.
    P. R. Goggin and W. N. Reynolds, Philos. Mag. 16 (1967) 317.CrossRefGoogle Scholar
  19. 19.
    m. s. dresselhaus, g. D. dresselhaus, k. sugihara, i. l. spain and h. A. goldberg, “Graphite Fibers and Filaments”, edited by M. Gardona (Springer Series in Materials Science 5, 1988) p. 92 and p. 132.Google Scholar
  20. 20.
    S. Mrozowski, Carbon 9 (1971) 97.CrossRefGoogle Scholar
  21. 21.
    H. B. Brown, Y. Tomkiewicz, A. A. Aviram, A. Broers and B. Sunners, Solid State Comm. 35 (1980) 135.Google Scholar
  22. 22.
    W. Bucker, J. Non-Cryst. Solids 12 (1973) 115.CrossRefGoogle Scholar
  23. 23.
    I. L. Spain, K. J. Volin, H. A. Goldberg and I. Kalnin, J. Phys. Chem. Solids 44 (1983) 839.CrossRefGoogle Scholar
  24. 24.
    B. Deroide, J. V. Zanchetta and A. Diby, Carbon 29(1) (1991) 3.CrossRefGoogle Scholar
  25. 25.
    T. Hamada, Y. Sajiki, M. Furuyama, T. Tomioka and M. Endo, J. Mater. Res. 4(4) (1989) 1027.CrossRefGoogle Scholar
  26. 26.
    Y. Koike and T. Fukase, Solid State Comm. 62(7) (1987) 499.CrossRefGoogle Scholar
  27. 27.
    Y. Isawa, K. Hoshino and H. Fukuyama, J. Phys. Soc. Japan 51 (1982) 3262.CrossRefGoogle Scholar
  28. 28.
    Y. Isawa and H. Fukuyama, J. Phys. Soc. Japan 53 (1984) 1415.CrossRefGoogle Scholar
  29. 29.
    F. J. Ohkawa and H. Fukuyama, J. Phys. Soc. Japan 53 (1984) 2640.CrossRefGoogle Scholar
  30. 30.
    F. J. Ohkawa, Prog. Theor. Phys. Suppl. 84 (1985) 166.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • T. Tomioka
    • 1
  • Y. Arai
    • 1
  • T. Hamada
    • 1
  1. 1.Advanced Materials and Technology Research LaboratoriesNippon Steel CorporationKawasakiJapan

Personalised recommendations