Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1556–1560 | Cite as

Electrical properties of BaSnO3 in substitution of antimony for tin and lanthanum for barium

  • Tongkai Huang
  • TetsurŌ Nakamura
  • Mitsuru Itoh
  • Yoshiyuki Inaguma
  • Osamu Ishiyama
Papers

Abstract

Polycrystalline materials of BaSn1−xSbxO3−δ and Ba1−yLaySnO3−δ were prepared. Substitutional solubilities of antimony for tin and lanthanum for barium, respectively, in BaSnO3 were obtained to be x=0.18 for BaSn1−xSbxO3−δ and y<0.052 for Ba1-yLaySnO3−δ. The X-ray photoemission spectroscopy measurements showed the valence of antimony and tin is mixed in our samples of BaSn1−xSbxO3−δ. At lower temperature, magnetic susceptibilities of BaSn1−xSbxO3−δ and Ba1−yLaySnO3−δ satisfy the Curie law, indicating the existence of non-interacting localized electrons at the Sn4+ site, and forming a Sn4++e state in these systems. By substitution of antimony and lanthanum in BaSnO3, the conductive properties are semiconductor-like. To explain this conductive behaviour, three types of mechanism were taken into consideration.

Keywords

Polymer Spectroscopy Barium Electrical Property Magnetic Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. W. Coffeen, J. Am. Ceram. Soc. 36 (1953) 207.CrossRefGoogle Scholar
  2. 2.
    O. I. Prokopalo, Ferroelectrics 14 (1976) 683.CrossRefGoogle Scholar
  3. 3.
    M. G. Smith, J. B. Goodenough, A. Manthiram, R. D. Talor, W. Peng and C. W. Kimball, J. Solid State Chem. 98 (1992) 181.CrossRefGoogle Scholar
  4. 4.
    D. J. Singh, D. A. Papaconstantopoulos, J. P. Julien and F. Cyrot-Lackmann, Phys. Rev. B 44 (1991) 9519.CrossRefGoogle Scholar
  5. 5.
    G. Larramona, C. Gutierrez, I. Pereira, M. R. Nunes and F. M. A. Da Costa, J. Chem. Soc., Faraday Trans. I 85 (1989) 907.CrossRefGoogle Scholar
  6. 6.
    R. J. Cava, P. Gammel, B. Batlogg, J. J. Krajewski, W. F. Peck, Jr., R. Feldel and R. B. Van Dover, Phys. Rev. B 42 (1990) 4815.CrossRefGoogle Scholar
  7. 7.
    Y. Shimizu, M. Shimabukuro, H. Arai and T. Seiyama, J. Electrochem. Soc. 136 (1989) 1206.CrossRefGoogle Scholar
  8. 8.
    Powder Diffraction File, Set 11–15 (Revised) Inorganic Volume No. PDIS-15iRB pp. 1041, Published by the Joint Committee on Powder Diffraction Standards (1972).Google Scholar
  9. 9.
    M. Itoh, T. Sawada, I. S. Kim, Y. Inaguma and T. Nakamura, Physica C 204 (1992) 194.CrossRefGoogle Scholar
  10. 10.
    R. D. Shannon, Acta Cryst. A32 (1976) 751.CrossRefGoogle Scholar
  11. 11.
    J. M. Herrmann, M. R. Nunes and F. M. A. Da Costa, J. Chem. Soc., Faraday Trans. I 78 (1982) 1983.CrossRefGoogle Scholar
  12. 12.
    E. Leja, Acta. Phys. Pol. A38 (1970) 165.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Tongkai Huang
    • 1
  • TetsurŌ Nakamura
    • 1
  • Mitsuru Itoh
    • 1
  • Yoshiyuki Inaguma
    • 1
  • Osamu Ishiyama
    • 1
  1. 1.Research Laboratory of Engineering MaterialsTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations