Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1535–1538 | Cite as

Lifetime-predictions of a glass-ceramic with machined flaws

  • T. Gent
  • D. Tucker
Papers
  • 38 Downloads

Abstract

A dynamic fatigue study was performed on a Li2O-Al2O3-SiO2 glass ceramic to assess its susceptibility to delayed failure and to compare the results with those from a previous study. Fracture mechanics techniques were used to analyse the results for the purpose of making lifetime predictions. The material strength and lifetime was seen to increase due to the removal of residual stress through grinding and polishing. Influence on time-to-failure is addressed for the case with and without residual stress present.

Keywords

Polymer Fatigue Residual Stress Fracture Mechanic Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Scheidler and E. Rodek, Am. Soc. Bull. 68 (1989) 1926.Google Scholar
  2. 2.
    D. S. Tucker J. Am. Ceram. Soc. 73 (1990) 2528.CrossRefGoogle Scholar
  3. 3.
    J. E. Ritter and J. A. Meisel ibid. 59 (1976) 478.CrossRefGoogle Scholar
  4. 4.
    A. G. Evans and H. Johnson, J. Mater. Sci. 2 (1976) 214.Google Scholar
  5. 5.
    J. E. Ritter, in “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange (Plenum Press, New York, 1978) pp. 667–86.Google Scholar
  6. 6.
    H. C. Chandan, R. C. Bradt, and G. E. Rindone, J. Am. Ceram. Soc. 61 (1978) 207.CrossRefGoogle Scholar
  7. 7.
    K. Jakus, D. C. Coyne, and J. E. Ritter, J. Mater. Sci. 10 (1978) 2071.CrossRefGoogle Scholar
  8. 8.
    S. M. Wiederhorn, A. G. Evans, E. R. Fuller and H. Johnson, J. Am. Ceram. Soc. 57 (1974) 319.CrossRefGoogle Scholar
  9. 9.
    K. K. Smyth and M. B. Magida, J. Am. Ceram. Soc. 66 (1982) 500.CrossRefGoogle Scholar
  10. 10.
    S. W. Freiman, A. C. Gonzalez, and S. M. Weiderhorn, Am. Ceram. Soc. Bull. 63 (1984) 597.Google Scholar
  11. 11.
    D. B. Marshall and B. R. Lawn, J. Am. Ceram. Soc. 63 (1980) 532.CrossRefGoogle Scholar
  12. 12.
    D. B. Marshall and B. R. Lawn, Commun. J. Am. Ceram. Soc. 64 (1981) C-6.Google Scholar
  13. 13.
    D. B. Marshall and B. R. Lawn, in “Fracture in Ceramic Materials”, edited by A. G. Evans (Noyes, Park Ridge, NJ 1984) p. 222.Google Scholar
  14. 14.
    E. Y. Robinson, “Estimating Weibull Parameters for Materials”, NASA Report no. TM 33–580, Jet Propulsion Laboratory, Pasadena, CA (1972).Google Scholar
  15. 15.
    Standard DIN 52 292, Part 1, Testing of Glass and Glass-Ceramics; Determination of Bending Strength, Double-Ring Bending Test on Flat Plate Specimens with Small Test Areas” (1984).Google Scholar
  16. 16.
    J. E. Ritter, N. Bandyopadhyay, and K. Janus, Am. Ceram. Soc. Bull. 60 (1981) 798.Google Scholar
  17. 17.
    P. R. Bevington “Data Analysis and Error Reduction in the Physical Sciences” (McGraw-Hill, New York, 1969) pp. 56–64.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • T. Gent
    • 1
  • D. Tucker
    • 1
  1. 1.NASA - Marshall Space Flight CenterHuntsvilleUSA

Personalised recommendations