Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1487–1494 | Cite as

Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the Ti+C system

  • Wei -Chang Lee
  • Shyan -Lung Chung
Papers

Abstract

The ignition phenomena and the reaction mechanism of the self-propagating high-temperature synthesis reaction of titanium and carbon powders were experimentally investigated. When using coarse graphite powders (<325 mesh) as the carbon source, the ignition temperature ranged from 1650–1720‡C and was independent of the C/Ti ratio. The ignition temperature could be significantly lowered by using finer graphite powders (e.g. 1400‡C for <1 Μm powder). When using carbon black as the carbon source, the ignition temperature ranged from 1050–1475‡C and was dependent on the C/Ti ratio. The ignition was confirmed in this study to be controlled by the rate of the surface reaction between titanium and carbon which, in turn, was determined by the contact surface area between them. The fractured surfaces of the products showed two different types of morphology, i.e. groups of grains similar to sintered bodies and agglomerated fine particles. The relative quantities of the two types of morphology depended on the type of carbon used, the C/Ti ratio, the particle size of graphite and the density of the reactant pellet. Possible reaction mechanisms have been proposed on the basis of the experimental observations of the ignition phenomena and the product morphology.

Keywords

Titanium Graphite Carbon Source Fracture Surface Reaction Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Walton and N. E. Poulos, J. Am. Ceram. Soc. 42 (1959) 40.CrossRefGoogle Scholar
  2. 2.
    A. G. Merzhanov and I. P. Borovinskaya, Dokl. Akad. Nauk. SSSR (Chem.) 204 (1972) 366.Google Scholar
  3. 3.
    I. P. Borovinskaya, A. G. Merzhanov, N. P. Nov. Ikov and A. K. Filonenko, Combust. Explos. Shock Waves 10 (1974) 2.CrossRefGoogle Scholar
  4. 4.
    A. G. Merzhanov, A. K. Filonenko and I. P. Borovinskaya, Dokl. Akad. Nauk. SSSR (Chem.) 208 (1973) 892.Google Scholar
  5. 5.
    A. G. Merzhanov, G. G. Karyuk, I. P. Borovinskaya, V. K. Prokudina and E. G. Dyad'ko, Sov. Powder Metall. Met. Ceram. 20 (1981) 709.CrossRefGoogle Scholar
  6. 6.
    J. B. Holt and Z. A. Munir, J. Mater. Sci. 21 (1986) 251.CrossRefGoogle Scholar
  7. 7.
    A. A. Zenin, A. G. Merzhanov and G. A. Nersisyan, Fiz. Goren. Vzryva 17 (1981) 63.Google Scholar
  8. 8.
    Z. A. Munir and J. B. Holt, J. Mater. Sci. 22 (1987) 710.CrossRefGoogle Scholar
  9. 9.
    I. P. Borovinskaya and V. E. Loryan, Sov. Powder Metall. Met. Ceram. 191 (1979) 851.Google Scholar
  10. 10.
    T. M. Maksimov, M. K. Ziatdinov, A. G. Raskolenlo and O. K. Lepakova, Combust. Explos. Shock Waves 15 (1979) 415.CrossRefGoogle Scholar
  11. 11.
    A. R. Sarkisyan, S. K. Dolukhanyan and I. P. Borovinskaya, Sov. Powder Metall. Met. Ceram. 17 (1978) 424.CrossRefGoogle Scholar
  12. 12.
    K. A. Philpot, Z. A. Munir and J. B. Holt, J. Mater. Sci. 22 (1987) 159.CrossRefGoogle Scholar
  13. 13.
    S. D. Dunmead, D. W. Readey, C. E. Semler and J. B. Holt, J. Am. Ceram. SoC. 72 (1989) 2318.CrossRefGoogle Scholar
  14. 14.
    O. R. Bergmann and J. Barrington, ibid. 49 (1966) 502.CrossRefGoogle Scholar
  15. 15.
    A. P. Hardt and P. V. Phund, Combust. Flame 21 (1973) 77.CrossRefGoogle Scholar
  16. 16.
    A. P. Hardt and R. W. Holsinger, ibid. 21 (1973) 91.CrossRefGoogle Scholar
  17. 17.
    V. O. Eramkov, A. G. Strunina and V. V. Barzykin, Combust. Explos. Shock Wave 12 (1976) 185.CrossRefGoogle Scholar
  18. 18.
    S. C. Deevi, J. Mater. Sci. 26 (1991) 2662.CrossRefGoogle Scholar
  19. 19.
    W. C. Lee and S. L. Chung, Int. J. Self-Propagat. High-Temp. Synth. 1(2) (1992) 211.Google Scholar
  20. 20.
    A. I. Kirdyashkin, Yu. M. Maksimov and E. A. Nekrasov, Fiz. Goren. Vzryva 17(4) (1981) 33.Google Scholar
  21. 21.
    S. Sarian, J. Appl. Phys. 39 (1968) 3305.CrossRefGoogle Scholar
  22. 22.
    Idem, ibid. 39 (1968) 5036.CrossRefGoogle Scholar
  23. 23.
    Idem, ibid. 40 (1969) 3515.CrossRefGoogle Scholar
  24. 24.
    R. Pampuch, J. Lis and L. Stobierski, in “Combustion and Plasma Synthesis of High Temperature Materials”, edited by Z. A. Munir and J. B. Holt (VCH, New York, 1990) p. 211.Google Scholar
  25. 25.
    E. K. Storms, in “The Refractory Carbides”, edited by J. L. Margrave (Academic Press, New York, 1967) p. 3.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Wei -Chang Lee
    • 1
  • Shyan -Lung Chung
    • 1
  1. 1.Department of Chemical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations