Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1480–1486 | Cite as

Polyacetal and thermoplastic polyurethane elastomer toughened polyacetal: crystallinity and fracture mechanics

  • G. Kumar
  • N. R. Neelakantan
  • N. Subramanian
Papers

Abstract

The effect of thermoplastic polyurethane (TPU) elastomer on the melting point and the percentage crystallinity of polyacetal (POM) is studied by differential scanning calorimetry (DSC). Wide angle X-ray diffraction (WAXD) scans of POM, TPU and their blends have been taken and the results indicate that the crystalline structure of POM remains unaffected even after the addition of amorphous TPU. The influence of defects like holes and notches on the ultimate tensile strength has been examined. The resistance to crack initiation (Jc), the resistance to steady state crack propagation (Rp) and the resistance to crack growth at maximum load (Rmax) are estimated. The POM/TPU blends display higher crack resistance values than pure POM. The hysteresis energy of blends is determined and is found to increase with TPU content.

Keywords

Tensile Strength Differential Scanning Calorimetry Crack Initiation Ultimate Tensile Strength Crack Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Seymour, “Rubber Toughened Plastics”, edited by C. K. Riew (American Chemical Society, Washington, DC, 1989).Google Scholar
  2. 2.
    European Patent, 121, 407 (1984); U.S. Patent, 479, 942 (1983).Google Scholar
  3. 3.
    E. A. Flexman, Jr., Mod. Plast. February (1985) 72.Google Scholar
  4. 4.
    F. C. Chang and M. Y. Yang, Polym. Engng Sci. 30 (1990) 543.CrossRefGoogle Scholar
  5. 5.
    R. John, N. R. Neelakantan and N. Subramanian, Polym. Engng Sci. 32 (1992) 20.CrossRefGoogle Scholar
  6. 6.
    F. Kloos and E. Wolters, Kunststoffe 75 (1985) 735.Google Scholar
  7. 7.
    U. S. Patent, 625, 954 (1984); European Patent, 167, 369 (1986).Google Scholar
  8. 8.
    J. M. Machado and R. N. French, Polymer 33 (1992) 439.CrossRefGoogle Scholar
  9. 9.
    B. Wunderlich, “Macromolecular Physics, volume-3: Crystal Melting” (Academic Press, New York, 1980).Google Scholar
  10. 10.
    B. H. Kim and C. R. Joe, Polym. Test. 7 (1987) 355.CrossRefGoogle Scholar
  11. 11.
    Idem and C. R. Joe, Engng Fract. Mech. 34 (1) (1989) 221.CrossRefGoogle Scholar
  12. 12.
    C. J. Ong and F. P. Price, J. Polym. Sci., Symp. 63 (1978) 45.CrossRefGoogle Scholar
  13. 13.
    W. Y. Chiang and M. S. Lo, J. Appl. Polym. Sci. 36 (1988) 1685.CrossRefGoogle Scholar
  14. 14.
    C. S. Ha and S. C. Kim. J. Appl. Polym. Sci. 35 (1988) 2211.CrossRefGoogle Scholar
  15. 15.
    D. J. Ihm, C. S. Ha and S. C. Kim, Polymer (Korea) 12 (1988) 249.Google Scholar
  16. 16.
    N. S. Murthy, H. Minor, M. K. Akkapeddi and B. Van Buskirk, J. Appl. Polym. Sci. 41 (1990) 2265.CrossRefGoogle Scholar
  17. 17.
    D. M. Otterson, B. H. Kim and R. E. Lavengood, J. Mater. Sci. 26 (1991) 1478.CrossRefGoogle Scholar
  18. 18.
    C. B. Lee and F. C. Chang, Polym, Engng Sci. 32 (1992) 792.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • G. Kumar
    • 1
  • N. R. Neelakantan
    • 1
  • N. Subramanian
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of TechnologyMadrasIndia

Personalised recommendations