Journal of Materials Science

, Volume 30, Issue 6, pp 1473–1479 | Cite as

Dielectrical properties of u.v. cured acrylated polysiloxane films

  • L. M. Laboranti
  • E. R. Mognaschi
  • G. Gozzelino
  • A. Priola


The dielectric properties of films obtained through u.v. curing of an acrylated polysiloxane resin were evaluated in the temperature range from −136 to 24‡C. Different relaxation processes (α, Β, γ, δ), characterized by decreasing dielectric relaxation intensities, were evidenced and quantitatively analysed: the α process was attributed to the glass transition process on the basis of the dynamic mechanical spectrum of the film and of its behaviour at different temperatures. The other processes (Β, γ, δ), weaker than the α process, could be attributed to local dipolar motions present, even at low temperatures, in the polymer network.


Polymer Glass Transition Dielectric Property Acrylated Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. E. Hoyle and S. F. Kinstle (eds.), “Radiation Curing of Polymeric Materials”, ACS Symposium, Series No. 417, Washington (1990).Google Scholar
  2. 2.
    A. Priola, G. Gozzelino, F. Ferrero and G. Malucelli, Polymer 34 (1993) 3653.CrossRefGoogle Scholar
  3. 3.
    A. Priola and F. Renzi, J. Mater. Sci. 20 (1985) 2885.CrossRefGoogle Scholar
  4. 4.
    A. Priola, G. Gozzelino and F. Ferrero, Int. J. Adhesion Adhesives 10 (1990) 77.CrossRefGoogle Scholar
  5. 5.
    C. J. F. Böttcher and P. Bordewijk, Theory of electric polarisation, vol. II (Elsevier, Amsterdam, 1978).Google Scholar
  6. 6.
    N. G. Mc Crum, B. E. Read and G. Williams, “Anelastic and dielectric effects in polymeric solids” (John Wiley & Sons, London, 1967).Google Scholar
  7. 7.
    A. K. Jonscher, “Dielectric relaxation in solids” (Chelsea Dielectric Press, London, 1983).Google Scholar
  8. 8.
    H. J. Hoffmann, J. Phys. IV (France) 2 (1992) C2–21.CrossRefGoogle Scholar
  9. 9.
    U. Gaur, S. F. Lau and B. Wunderlich, J. Phys. Chem. 12 (1983) 91.Google Scholar
  10. 10.
    Idem., ibid. 12 (1983) 65.Google Scholar
  11. 11.
    R. H. Boyd, Polymer 26 (1985) 1123.CrossRefGoogle Scholar
  12. 12.
    R. Diaz-Calleja, E. Riande and J. San Roman, J. Phys. Chem. 96 (1992) 931.CrossRefGoogle Scholar
  13. 13.
    Von O. Broens and F. H. Müller, Kolloid Z. 140 (1955) 121.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • L. M. Laboranti
    • 1
  • E. R. Mognaschi
    • 1
  • G. Gozzelino
    • 2
  • A. Priola
    • 2
  1. 1.Dipartimento di Fisica ‘A Volta’Università di PaviaPaviaItaly
  2. 2.Dipartimento di Scienza dei Materiali e Ingegneria ChimicaPolitecnico di TorinoTorinoItaly

Personalised recommendations