Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1462–1468 | Cite as

Synthesis and physicochemical properties of cobalt aluminium hydrotalcites

  • S. Kannan
  • S. Velu
  • V. Ramkumar
  • C. S. Swamy
Papers

Abstract

Cobalt aluminium hydrotalcites with different compositions were prepared by a coprecipitation method under low supersaturation conditions. The compounds were characterized by X-ray diffraction (XRD), infrared absorption (IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and BET surface area measurements. XRD and IR studies revealed that all the compounds are single-phase crystallized under a hydrotalcite-like network. Hydrothermal treatments given to the aged sample increased the crystallinity of the samples. TG studies showed two stages of weight loss, the first due to the removal of interlayer water and the second ascribed to the removal of water molecules from the brucite sheet and CO2 from the interlayer carbonate anion, whose transition temperature depends on the Co/Al atomic ratio. Thermal calcination of these materials results in the formation of high surface area non-stoichiometric spinel phase whose crystallinity increases with increase in the calcination temperature attributed to the sintering of the particles.

Keywords

Differential Scanning Calorimetry Calcination Infrared Absorption Hydrotalcites Brucite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Feitknecht, Helv. Chem. Acta 25 (1942) 131.CrossRefGoogle Scholar
  2. 2.
    R. Allmann, Acta Cystallogr. 24 (1968) 972.CrossRefGoogle Scholar
  3. 3.
    H. F. W. Taylor, Mineral. Mag. 39 (1973) 377.CrossRefGoogle Scholar
  4. 4.
    S. Miyata, Clays Clay Miner. 23 (1975) 369.CrossRefGoogle Scholar
  5. 5.
    W. T. Reichle, Solid State Ionics 22 (1986) 135.CrossRefGoogle Scholar
  6. 6.
    K. A. Corrado, A. Kostapapas and S. L. Suib, ibid. 26 (1988) 77.CrossRefGoogle Scholar
  7. 7.
    H. C. B. Hansen and R. M. Taylor, Clay Miner. 25 (1990) 161.CrossRefGoogle Scholar
  8. 8.
    T. J. Pinnavaia, NATO ASI Ser., Ser. C, Zeolite Microporous Solids: Synthesis, structure and reactivity (1992) p. 91.Google Scholar
  9. 9.
    S. Kannan and C. S. Swamy, J. Mater. Sci. Lett. 11 (1992) 1585.CrossRefGoogle Scholar
  10. 10.
    F. Cavani, F. Trifiro and A. Vaccari, Catal. Today 11 (1991) 173.CrossRefGoogle Scholar
  11. 11.
    E. C. Kruissink, L. L. Van Reijen and J. R. H. Ross, J. Chem. Soc. Farad. Trans. I 77 (1981) 665.CrossRefGoogle Scholar
  12. 12.
    O. Clause, M. Gazzano, F. Trifiro, A. Vaccari and L. Zotorski, Appl. Catal. 73 (1991) 217.CrossRefGoogle Scholar
  13. 13.
    W. T. Reichle, J. Catal. 94 (1985) 547.CrossRefGoogle Scholar
  14. 14.
    S. Kannan and C. S. Swamy, Appl. Catal. B, 3 (1994) 109.CrossRefGoogle Scholar
  15. 15.
    D. E. Laylock, R. L. Collacoat, D. A. Skelton and M. F. Tchir, J. Catal. 130 (1991) 354.CrossRefGoogle Scholar
  16. 16.
    T. Sato, H. Okuyama, T. Endo and M. Shimada, React. Solids 8 (1990) 63.CrossRefGoogle Scholar
  17. 17.
    S. Kannan and C. S. Swamy, in “INDO-US workshop on Perspectives in New Materials”, New Delhi, India, 23–24 March 1992, abstract p. 75.Google Scholar
  18. 18.
    S. Miyata, Clays Clay Miner. 31 (1983) 305.CrossRefGoogle Scholar
  19. 19.
    R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B25 (1969) 925.CrossRefGoogle Scholar
  20. 20.
    B. D. Cullity, in “Elements of X-ray Diffraction” (Addison-Wesley, Reading, MA, 1987) p. 284.Google Scholar
  21. 21.
    F. M. Labajas, V. Rives and M. A. Ulibarri, J. Mater. Sci. 27 (1992) 1546.CrossRefGoogle Scholar
  22. 22.
    M. J. Hernandez-Moreno, M. A. Ulibarri, J. L. Rendon and C. J. Serna, Phys. Chem. Miner. 12 (1985) 34.Google Scholar
  23. 23.
    L. Pesic, S. Salipurovic, V. Markovic, D. Vucelic, W. Kagunya and W. Jones, J. Mater. Chem. 2 (1992) 1069.CrossRefGoogle Scholar
  24. 24.
    A. J. Marchi, J. I. Di Cosimo and C. R. Apestiguia, in “Proceedings of the 9th International Congress on Catalysis”, Vol. 2, Chemical Institute of Canada, Ottawa, edited by M. J. Phillips and M. Ternan (1988) p. 529.Google Scholar
  25. 25.
    M. J. Hernandez, M. A. Ulibarri, J. L. Rendon and C. J. Serna, Thermochim. Acta 81 (1984) 187.CrossRefGoogle Scholar
  26. 26.
    P. Garcia Casado and I. Rasines, J. Solid State Chem. 52 (1984) 187.CrossRefGoogle Scholar
  27. 27.
    W. T. Reichle, S. Y. Kang and D. S. Everhardt, J. Catal. 101 (1986) 352.CrossRefGoogle Scholar
  28. 28.
    E. C. Kruissink, L. E. Alzamora, S. Orr, E. B. M. Doesburg, L. L. Van Reijen, J. R. H. Ross and G. Van Veen, in “Preparation of Catalysts II”, Studies in Surface Science Catalysis, Vol. 3, edited by B. Delmon, P. Grange, P. A. Jacobs and G. Poncelet (Elsevier, Amsterdam, 1979) p. 143.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. Kannan
    • 1
  • S. Velu
    • 1
  • V. Ramkumar
    • 1
  • C. S. Swamy
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyMadrasIndia

Personalised recommendations