Journal of Materials Science

, Volume 30, Issue 6, pp 1455–1461 | Cite as

Fracture behaviour of pressure die-cast aluminium-graphite composites

  • U. T. S. Pillai
  • B. C. Pai
  • K. G. Satyanarayana
  • A. D. Damodaran


Fracture toughness values of pressure die-cast Al-7Si-3 Mg-5 graphite composites were measured and found to be in the range 8–10 MPa m1/2. Detailed microstructure of the composite and the fractured surfaces were examined. Defects such as clusters, agglomerations and segregation of graphite particles, play a dominant role in accelerating the fracture process. In addition, the acicular silicon phase present in the matrix and the casting defects, such as gas and shrinkage porosities, also initiated and accelerated the crack, thus lowering the fracture toughness of the composites.


Microstructure Porosity Graphite Shrinkage Fracture Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Mortensen, Proceedings of the ASM International Conference on “Fabrication of Particulates, Reinforced Metal Composites”, Montreal, Canada, September (1990), edited by J. Masounave and F. G. Hamel (ASM International, Materials Park, OH, 1990) p. 217.Google Scholar
  2. 2.
    I. A. Ibrahim, F. A. Mohamed and E. J. Lavernia, J. Mater. Sci. 26 (1991) 1137.CrossRefGoogle Scholar
  3. 3.
    S. V. Kamat, J. P. Hirth and R. Mehrabian, Acta. Metall. 37 (1989) 2395.CrossRefGoogle Scholar
  4. 4.
    Y. Folm and R. J. Arsenault, ibid. 37 (1989) 2413.CrossRefGoogle Scholar
  5. 5.
    Zhuri Wang and Ruby J. Zhang, Metall. Trans. 22A (1991) 1585.CrossRefGoogle Scholar
  6. 6.
    P. K. Rohatgi, R. Asthana and S. Das, Int. Metals Rev. 31 (3) (1986) 115.Google Scholar
  7. 7.
    S. Biswas, A. Santharam, N.A.P. Rao, K. Narayanaswamy, P. K. Rohatgi and S. K. Biswas, Tribol. Int. 8 (1980) 171.CrossRefGoogle Scholar
  8. 8.
    P. K. Rohatgi, S. Ray and Y. Liu, Int. Metals. Rev. 37(3) (1992) 129.CrossRefGoogle Scholar
  9. 9.
    B. S. Majumdhar, A. H. Yegneswaran and P. K. Rohatgi, Mater. Sci. Eng. 68 (1984) 85.CrossRefGoogle Scholar
  10. 10.
    U. T. S. Pillai, PhD thesis, IIT, New Delhi (1986).Google Scholar
  11. 11.
    U. T. S. Pillai, V. S. Kelukutty, B. C. Pai and K. G. Satyanarayana, Mater. Sci. Eng. A169 (1993) 93.CrossRefGoogle Scholar
  12. 12.
    D. Broek, “Elementary Engineering Fracture Mechanics”, (Martinus Nijhoft, Bordrecht, 1986) p. 181.CrossRefGoogle Scholar
  13. 13.
    Geetha Ramani, R. M. Pillai, B. C. Pai and T. R. Rama Mohan, Composites 22 (1991) 143.CrossRefGoogle Scholar
  14. 14.
    T. G. Neih, R. A. Rainen and D. J. Chellman, in “Proceedings of the 5th International Conference on Composite Materials-ICCMV”, edited by W. C. Harrigan J. Strife and A. K. Dhingra, San Diego, CA (1985) (The Metallurgical Society, AIME, Warrendale, PA, 1985) p. 825.Google Scholar
  15. 15.
    P. Mummery and B. Derby, Mater. Sci. Eng. A135 (1991) 221.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • U. T. S. Pillai
    • 1
  • B. C. Pai
    • 1
  • K. G. Satyanarayana
    • 1
  • A. D. Damodaran
    • 1
  1. 1.Regional Research Laboratory (CSIR)TrivandrumIndia

Personalised recommendations