Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1449–1454 | Cite as

Kinetics of discontinuous precipitation in a Zn-2.5 at % Cu alloy

  • I. Manna
  • J. N. Jha
  • S. K. Pabi
Papers

Abstract

The morphology and growth kinetics of discontinuous precipitation in a Zn-2.5 at % Cu alloy have been studied in the temperature range 383–583 K by optical and scanning electron microscopy. The precipitate phase has a lamellar morphology, and maintains a statistically constant interlamellar spacing under isothermal growth conditions. The interlamellar spacing increases with an increase in temperature. The isothermal growth kinetics in terms of reaction front migration rate is maximum at 523 K. The upper temperature limit for the occurrence of reaction in this alloy has been predicted to be 643 K. A detailed kinetic analysis of the experimental data using several analytical models has confirmed discontinuous precipitation in this system to be a boundary diffusion controlled reaction, and enabled the determination of the grain boundary chemical diffusivity of Cu in a Zn-rich Zn-Cu alloy in the temperature range studied. The corresponding activation energy values determined in this study, range between 65 to 86 kJ/mol−1, which compare well with the relevant data in the literature.

Keywords

Growth Kinetic Migration Rate Boundary Diffusion Precipitate Phase Interlamellar Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. B. Williams and E. P. Butler, Int. Met. Rev. 26 (1981) 153.CrossRefGoogle Scholar
  2. 2.
    W. Gust, in “Phase Transformations”, Series 3, No. 11, Vol 1, edited by The Institute of Metallurgists (The Chameleon Press, London, 1979) p. II/27.Google Scholar
  3. 3.
    M. Friesel, I. Manna and W. Gust, Colloque de Physique 51 (1990) C1–381.Google Scholar
  4. 4.
    I. Kaur and W. Gust, in “Fundamental of Grain and Interphase Boundary Diffusion”, 2nd Edn (Ziegler Press, Stuttgart, 1989) p. 222.Google Scholar
  5. 5.
    I. Manna, W. Gust and B. Predel, Scripta Metall. Mater. 24 (1990) 1635.CrossRefGoogle Scholar
  6. 6.
    I. Manna, J. N. Jha and S. K. Pabi, Acta Metall. Mater. (communicated).Google Scholar
  7. 7.
    Idem, Scripta Metall. Mater. 29 (1993) 817.CrossRefGoogle Scholar
  8. 8.
    B. Predel and W. Gust, Mater. Sci. Engng 16 (1974) 239.CrossRefGoogle Scholar
  9. 9.
    S. P. Gupta, Acta Metall. 35 (1987) 747.CrossRefGoogle Scholar
  10. 10.
    C. P. Ju and R. A. Fournelle, ibid. 33 (1985) 71.CrossRefGoogle Scholar
  11. 11.
    C. S. Smith, Trans. Amer. Soc. Met. 45 (1953) 553.Google Scholar
  12. 12.
    R. Watanabe and S. Koda, Trans. National Res. Inst. Met. 7 (1965) 13.Google Scholar
  13. 13.
    S. Abdou and W. Gust, in “Developments in Production Engineering Design and Control”, edited by A. E. Al-Ashram and M. W. Badawi (Alexandria University, 1989) p. 137.Google Scholar
  14. 14.
    J. Petermann and E. Hornbogen, Z. Metallk. 59 (1968) 814.Google Scholar
  15. 15.
    K. Lucke, ibid. 52 (1961) 1.Google Scholar
  16. 16.
    I. Manna, S. K. Pabi and W. Gust, Acta Metall. Mater. 39 (1991) 1489.CrossRefGoogle Scholar
  17. 17.
    M. Hillert, in “Mechanism of Phase Transformation in Crystalline Solids” edited by the Institute of Metals, (London, 1969) p. 231.Google Scholar
  18. 18.
    W. Gust, T. H. Chuang and B. Predel, in “Decomposition of alloys: the early stages”, edited by P. Haasen et al. (Pergamon Press, Oxford, 1984) p. 208.CrossRefGoogle Scholar
  19. 19.
    C. Zener, Trans. AIME 167 (1946) 550.Google Scholar
  20. 20.
    D. Turnbull, Acta Metall. 3 (1955) 55.CrossRefGoogle Scholar
  21. 21.
    H. I. Aaronson and Y. C. Liu, Scripta Metall. 2 (1968) 1.CrossRefGoogle Scholar
  22. 22.
    J. W. Cahn, Acta Metall. 7 (1959) 18.CrossRefGoogle Scholar
  23. 23.
    J. M. Shapiro and J. S. Kirkaldy, ibid. 16 (1968) 1239.CrossRefGoogle Scholar
  24. 24.
    B. E. Sundquist, Metall. Trans. A4 (1973) 1919.CrossRefGoogle Scholar
  25. 25.
    M. Hillert, Acta Metall. 30 (1982) 1689.CrossRefGoogle Scholar
  26. 26.
    G. B. Gibbs, Phys. Status Solidi 16 (1966) K27.CrossRefGoogle Scholar
  27. 27.
    M. Hansen and K. Anderko, in “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958) p. 649.Google Scholar
  28. 28.
    L. E. Murr, in “Interfacial Phenomena in Metals and Alloys” (Addison-Wesley, London, 1975) p. 133.Google Scholar
  29. 29.
    B. E. Sundquist, Acta Metall. 16 (1968) 1413.CrossRefGoogle Scholar
  30. 30.
    D. Bergner and W. Lange, Phys. Status Solidi 18 (1966) 75.CrossRefGoogle Scholar
  31. 31.
    C. J. Smithells (Ed.), in “Metals Reference Book” (Butterworth, London, 1976) p. 880.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • I. Manna
    • 1
  • J. N. Jha
    • 1
  • S. K. Pabi
    • 1
  1. 1.Metallurgical Engineering DepartmentIndian Institute of TechnologyKharagpur, W. B.India

Personalised recommendations