Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1445–1448 | Cite as

Effect of oxide dopant on the structure of fluorozirconate glasses studied by X-ray photoelectron spectroscopy

  • Lipeng Zhang
  • Tao Fan
  • P. W. Wang
Papers

Abstract

The effect of oxide dopant on the structure of 62ZrF4-30BaF2-8LaF3 (mol%) glass by equimolar substitution of BaO for BaF2 was studied by X-ray photoelectron spectroscopy (XPS). The XPS spectra of La 3d, Ba 3d, F 1s, O 1s and Zr 3d were measured. From the deconvoluted results for the XPS spectra of elements in the glass, it was proposed that the oxide ions added to the glass mainly bond to Zr4+ and replace the bridging fluoride ions resulting in the formation of the F-Zr-O bond. Further analyses indicated that the oxide ions mainly play a non-bridging role instead of a bridging role in the glass structure.

Keywords

Oxide Polymer Spectroscopy Fluoride Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Drexhage, C. T. Monihan, B. Bendow, E. Gboji, K. H. Chung and M. Saleh-Boulos, Mater. Res. Bull. 16 (1981) 943.CrossRefGoogle Scholar
  2. 2.
    Hu Hefang and J. D. Mackenzie, J. Non-Cryst. Solids 80 (1986) 495.CrossRefGoogle Scholar
  3. 3.
    G. W. Tasker, D. R. Uhlmann, P. I. K. Onorato, M. N. Alexander and C. W. Struck, J. Phys. C8 (1985) 273.Google Scholar
  4. 4.
    P. I. K. Onorato, M. N. Alexander, C. W. Struck, G. W. Tasker and D. R. Uhlmann, J. Am. Ceram. SoC. 68 (1985) C148.CrossRefGoogle Scholar
  5. 5.
    A. Osaka, Y. H. Wang, Y. Miura and T. Tsugaru, J. Mater. Sci. 26 (1991) 87.CrossRefGoogle Scholar
  6. 6.
    Y. H. Wang, A. Osaka, Y. Miura and T. Tsugaru, J. Mater. Sci. Lett. 8 (1988) 421.CrossRefGoogle Scholar
  7. 7.
    J. Fu, A. Osaka, T. Nanba, Y. Miura and H. Yamanaka, Mater. Lett. 15 (1992) 264.CrossRefGoogle Scholar
  8. 8.
    R. M. Almeida, J. Lau and J. D. Mackenzie, ibid. 69 (1984) 161.Google Scholar
  9. 9.
    T. Buyuklimanli and J. H. Simmons, J. Non-Cryst. Solids 120 (1989) 262.CrossRefGoogle Scholar
  10. 10.
    G. M. Renlund, S. Prochazka and R. H. Doremus, J. Mater. Res. 6 (1991) 2723.CrossRefGoogle Scholar
  11. 11.
    G. C. Nelson, J. Vac. Sci. Technol. A2 (1984) 1141.CrossRefGoogle Scholar
  12. 12.
    C. M. Baldwin, R. M. Almeida and J. D. Mackenzie, J. Non-Cryst. Solids 43 (1981) 309.CrossRefGoogle Scholar
  13. 13.
    C. A. Angell and C. C. Phifer, in “Proceedings of the 5th International Symposium on Halide Glasses”, Shizuoka, Japan, 1988, p. 282.Google Scholar
  14. 14.
    Lipeng Zhang and Fuxi Gan, Glass Technol. 33 (1992) 47.Google Scholar
  15. 15.
    C. D. Wager, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg (eds) “Handbook of X-ray photoelectron Spectroscopy” (Perkin-Elmer Corp., Eden Prairie, MN, 1979) pp. 42, 100.Google Scholar
  16. 16.
    C. G. Pantano and R. K. Brow, J. Am. Ceram. Soc. 71 (1988) 577.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Lipeng Zhang
    • 1
  • Tao Fan
    • 1
  • P. W. Wang
    • 1
  1. 1.Department of Physics and Materials Research InstituteThe University of Texas at El PasoEl PasoUSA

Personalised recommendations