Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1434–1438 | Cite as

Effect of temperature on the lower yield strength and static strain ageing in low-carbon steels

  • S. Lou
  • D. O. Northwood
Papers

Abstract

Three different low-carbon steels, namely ASTM 516 Gr70 PVQ, CSA G40.21 350 WT and CSA G40.21 350 AT plates, were tensile tested at temperatures from ambient to 623 K over a range of strain rates (1.48×10−5–1.48×10−3 s−1). The lower yield strength generally decreases with increasing temperature, but there is a strength plateau, or a small peak, at temperatures between 423 and 573 K. The results of computer modelling show that concentration of nitrogen in the atmospheres at dislocations decreases with increasing temperature, approaches a minimum value at a temperature around 423 K, then increases with increasing temperature for temperatures above 423 K. This effect of temperature on the concentration of nitrogen in atmospheres at dislocations results in the strength plateau or small peak.

Keywords

Nitrogen Polymer Atmosphere Yield Strength Tensile Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Clarendon Press, Oxford, 1953).Google Scholar
  2. 2.
    A. R. Rosenfield, G. T. Hahn, A. L. Bement Jr and R. I. Jaffee, “Dislocation Dynamics” (McGraw-Hill, New York, 1968).Google Scholar
  3. 3.
    A. Van Den Beukel, Acta Metall. 28 (1980) 965.CrossRefGoogle Scholar
  4. 4.
    J. F. Butler, Trans. Met. Soc. AIME 224 (1962) 89.Google Scholar
  5. 5.
    M. M. Salama, J. Petrol. Technol. 36 (1984) 141.CrossRefGoogle Scholar
  6. 6.
    J. D. Baird, Metals Mater. 5 (1971) 1.Google Scholar
  7. 7.
    J. K. Chakravartty, S. L. Wadekar, T. K. Sinha and M. K. Asundi, J. Nucl. Mater. 119 (1983) 51.CrossRefGoogle Scholar
  8. 8.
    J. D. Baird, Iron Steel 36 (1963) 186.Google Scholar
  9. 9.
    B. J. Brindley and P. J. Warthington, Metall. Rev. 15 (1970) 101.Google Scholar
  10. 10.
    W. C. Leslie and R. L. Rickett, J. Metals 5 (1953) 1021.Google Scholar
  11. 11.
    C. C. Li and W. C. Leslie, Metall. Trans. A 9 (1978) 1765.CrossRefGoogle Scholar
  12. 12.
    Y. T. Chou, in “Proceedings of a Symposium on the Interaction Between Dislocation and Point Defects”, Harwell, July 1968, edited by B. L. Eyre (Metallurgy Division, UKAEA Research Group, Atomic Energy Research Establishment, Harwell, 1968) p. 105.Google Scholar
  13. 13.
    J. C. M. Li, R. A. Oriani and L. S. Darken, Z. Phys. Chem. Neue Folge 49 (1966) 271.CrossRefGoogle Scholar
  14. 14.
    G. X. Lu and Z. S. Hou, “Physical Metallurgy” (Science and Technology Press, Shanghai, 1985).Google Scholar
  15. 15.
    J. D. Fast, “Interaction between Metals and Gases”, Vol. 1 (Academic Press, New York. 1965).Google Scholar
  16. 16.
    S. Lou and D. O. Northwood, J. Mater. Eng. Perfor. 3 (1994) 344.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. Lou
    • 1
  • D. O. Northwood
    • 1
  1. 1.Engineering Materials GroupUniversity of WindsorWindsorCanada

Personalised recommendations