Journal of Materials Science

, Volume 30, Issue 6, pp 1425–1428 | Cite as

Vapour transport of magnesia into reaction-bonded silicon nitride

  • M. D. Pugh
  • A. J. Moulson


Magnesia, as a sintering additive, can be introduced into reaction-bonded silicon nitride (RBSN) via vapours-phase transport. The principal process variables were studied; a controlling factor was found to be the amount of silica on the internal surfaces of the ceramic. Through a controlled oxidation of the RBSN, the amount of magnesia introduced to the compact was increased to ≈2 wt% allowing a post-sintered density of 93% theoretical to be achieved. Further increases in internal oxidation, and consequent magnesia uptake, were limited by the oxidation of Si3N4 whiskers on the surface of the RBSN and in its pore structure.


Oxidation Polymer Silicon Magnesia Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Giachello and P. Popper, Ceram. Int. 5 (1979) 110.CrossRefGoogle Scholar
  2. 2.
    J. A. Mangels, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinuus Nijhoff, 1983) p. 231.Google Scholar
  3. 3.
    P. L. Antora, A. Giachello and P. C. Martinengo, in “Ceramic Powders”, edited by P. Vincenzeni (Elsevier, 1983) p. 753.Google Scholar
  4. 4.
    G. Terwilliger and F. Lange, J. Mater. Sci. 10 (1975) 1169.CrossRefGoogle Scholar
  5. 5.
    A. Giachello, P. Martinengo, G. Tommasini and P. Popper, ibid. 14 (1979) 2825.CrossRefGoogle Scholar
  6. 6.
    M. D. Pugh, PhD Thesis, University of Leeds (1986).Google Scholar
  7. 7.
    T. Sata, J. Sasamoto, M. Lee and E. Maeda, Rev. Int. Haut. Temp. Refract. 15 (1978) 237.Google Scholar
  8. 8.
    J. M. Vieira, PhD Thesis, University of Leeds (1981).Google Scholar
  9. 9.
    A. J. Moulson, J. Mater. Sci. 14 (1979) 1017.CrossRefGoogle Scholar
  10. 10.
    J. R. G. Evans and A. J. Moulson, J. Phys. E. Sci. Instrum. 16 (1983) 1033.CrossRefGoogle Scholar
  11. 11.
    A. Atkinson, A. J. Moulson and E. W. Roberts, J. Am. Ceram. Soc. 59 (1976) 285.CrossRefGoogle Scholar
  12. 12.
    S. C. Singhal, Ceram. Int. 2 (1976) 123.CrossRefGoogle Scholar
  13. 13.
    E. M. Levin, C. R. Robbins and H. F. McMurdie, in “Phase Diagrams for Ceramists”, edited by M. K. Rester (American Ceramic Society, 1964) Fig. 712.Google Scholar
  14. 14.
    G. Grathwohl and F. Thümmler, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinuus Nijhoff, 1983) p. 547.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. D. Pugh
    • 1
  • A. J. Moulson
    • 1
  1. 1.School of MaterialsUniversity of LeedsUK

Personalised recommendations