Journal of Materials Science

, Volume 30, Issue 6, pp 1409–1419 | Cite as

Deformation micromechanics in model carbon fibre-reinforced composites

Part I The single-fibre pull-out test
  • X. H. Gu
  • R. J. Young
  • R. J. Day


Raman spectroscopy has been used to study the deformation micromechanics of the single-fibre pull-out test for a carbon fibre/epoxy resin system using surface-treated and untreated versions of the same type of PAN-based fibre. It has been possible to determine the detailed strain distribution along embedded fibres and it has been found that it varies with the level of strain in the fibre outside the resin block. The variation of interfacial shear stress along the fibre/matrix interface has been determined using the balance of forces equilibrium and this has been compared with the single values of interfacial shear strength determined from conventional pull-out analyses. It has been demonstrated that it is possible to identify situations where the interface is well-bonded, partially debonded or fully debonded and also to follow the failure mechanisms in detail. It has been found that the level of interfacial adhesion is better for the surface-treated fibre and that, for the untreated fibre, interfacial failure takes place by the cohesive failure of a weakly-bonded surface skin that appears to be removed by the surface pretreatment process.


Shear Strength Interfacial Shear Interfacial Shear Stress Interfacial Shear Strength Interfacial Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. T. Dibenedetto and L. Nicolais, in “Advances in Composite Materials” edited by G. Piatti (Applied Science, London, 1978) pp. 153–81.Google Scholar
  2. 2.
    L. T. Drzal, in “Advances in Polymer Science 75-Epoxy Resins and Composites II,” edited by K. Dusek (Springer, Berlin, Heidelburg, 1986) pp. 3–30.Google Scholar
  3. 3.
    M. J. Pitkethly and J. B. Doble, in “Interfacial Phenomena in Composite Materials '89”, edited by F. R. Jones (Butterworth, London, 1989) pp. 35–43.Google Scholar
  4. 4.
    B. Miller, U. Gaur and D. E. Hirt, Compos. Sci. Technol. 42 (1991) 207.CrossRefGoogle Scholar
  5. 5.
    K. R. Jiang and L. S. Penn, ibid. 45 (1992) 89.CrossRefGoogle Scholar
  6. 6.
    S. F. Fu, B. L. Zhou, X. Chen, G. H. He and C. W. Lung, Composites 24 (1993) 5.CrossRefGoogle Scholar
  7. 7.
    A. T. Dibenedetto, Compos. Sci. Technol. 42 (1991) 103.CrossRefGoogle Scholar
  8. 8.
    J. P. Favre, in “Interfacial Phenomena in Composite Materials '89”, edited by F. R. Jones (Butterworth, London, 1989) pp. 7–12.Google Scholar
  9. 9.
    R. J. Gray, J. Mater. Sci. 19 (1984) 861.CrossRefGoogle Scholar
  10. 10.
    M. R. Piggott, Compos. Sci. Technol. 42 (1991) 57.CrossRefGoogle Scholar
  11. 11.
    Z.-F. Li and D. T. Grubb, J. Mater. Sci. 29 (1994) 189.CrossRefGoogle Scholar
  12. 12.
    C. Marotzke, in “Developments in the Science and Technology of Composite Materials”, edited by A. R. Bunsell, A. Kelly and A. Massiah (Woodhead, Cambridge, 1993) p. 281.Google Scholar
  13. 13.
    R. J. Day, “2nd International Conference on Deformation and Fracture of Composites”, UMIST, Manchester (Institute of Materials, London, 1993) p. 23/1.Google Scholar
  14. 14.
    R. J. Young, “Polymer Surfaces and Interfaces II” (Wiley, Chichester, 1992) Ch. 6.Google Scholar
  15. 15.
    R. J. Day, I. M. Robinson, M. Zakikhani and R. J. Young, Polymer 28 (1987) 1833.CrossRefGoogle Scholar
  16. 16.
    X. Yang, X. Hu, R. J. Day and R. J. Young, J. Mater. Sci. 27 (1992) 1409.CrossRefGoogle Scholar
  17. 17.
    I. M. Robinson, M. Zakikhani, R. J. Day and R. J. Young, J. Mater. Sci. Lett. 6 (1987) 1212.CrossRefGoogle Scholar
  18. 18.
    R. J. Young, D. Lu, R. J. Day, W. F. Knoff and H. A. Davis, J. Mater. Sci. 27 (1992) 5431.CrossRefGoogle Scholar
  19. 19.
    W. F. Wong and R. J. Young, ibid. 29 (1994) 510.CrossRefGoogle Scholar
  20. 20.
    R. J. Young, C. Galiotis, I. M. Robinson and D. N. Batchelder, ibid. 22 (1987) 3642.CrossRefGoogle Scholar
  21. 21.
    M. C. Andrews and R. J. Young, J. Raman Spectrosc. 24 (1993) 539.CrossRefGoogle Scholar
  22. 22.
    R. J. Day, X. Hu and R. J. Young, Compos. Sci. Technol. 48 (1993) 255.CrossRefGoogle Scholar
  23. 23.
    N. Melanitis, C. Galiotis, P. L. Tetlow and C. K. L. Davies, J. Compos. Mater. 26 (1992) 574.CrossRefGoogle Scholar
  24. 24.
    H. L. Cox, Br. J. Appl. Phys. 3 (1952) 72.CrossRefGoogle Scholar
  25. 25.
    L. B. Greszczuk, in “Interfaces in Composites”, ASTM STP 452 (American Society for Testing and Materials, Philadelphia, PA, 1969) p. 42.CrossRefGoogle Scholar
  26. 26.
    P. Lawrence, J. Mater. Sci. 7 (1972) 1.CrossRefGoogle Scholar
  27. 27.
    P. S. Chua and M. R. Piggott, Compos. Sci. Technol. 22 (1985) 33.CrossRefGoogle Scholar
  28. 28.
    idem, ibid. 22 (1985) 107.CrossRefGoogle Scholar
  29. 29.
    idem, ibid. 22 (1985) 185.CrossRefGoogle Scholar
  30. 30.
    idem, ibid. 22 (1985) 245.CrossRefGoogle Scholar
  31. 31.
    A. Kelly and N. H. Máćmillan, “Strong Solids”, 3rd edn (Clarendon Press, Oxford, 1986).Google Scholar
  32. 32.
    J. Bowyer and M. G. Bader, J. Mater. Sci. 7 (1972) 1315.CrossRefGoogle Scholar
  33. 33.
    R. K. Mittal and V. B. Gupta, ibid. 17 (1982) 3179.CrossRefGoogle Scholar
  34. 34.
    A. Kelly and W. R. Tyson, J. Mech. Phys. Solids 13 (1965) 329.CrossRefGoogle Scholar
  35. 35.
    P. J. Herrera-Franco and L. T. Drzal, Composites 23 (1992) 2.CrossRefGoogle Scholar
  36. 36.
    M. R. Piggott, in “Interfacial Phenomena in Composite Materials '91”, edited by I. Verpoest and F. R. Jones (Butterworth-Heinemann, Oxford, 1991) p. 2.Google Scholar
  37. 37.
    W. R. Tyson and G. Davis, Br. J. Appl. Phys. 10 (1963) 199.Google Scholar
  38. 38.
    D. M. Schuster and E. Scala, Am. Inst. Aero. Astro. J. 6 (1978) 527.Google Scholar
  39. 39.
    Y. Huang and R. J. Young, Carbon, in press.Google Scholar
  40. 40.
    L. S. Penn, F. Bystry, W. Carp and S. Lee, in “Molecular Characterisation of Interfaces”, edited by H. Ishida and G. Kumar (Plenum, New York, 1985) pp. 93.Google Scholar
  41. 41.
    J. P. Favre and J. Perrin, J. Mater. Sci. 7 (1972) 1113.CrossRefGoogle Scholar
  42. 42.
    J. P. Favre and M. C. Mérienne, J. Adhes. Adhes. 1 (1981) 311.CrossRefGoogle Scholar
  43. 43.
    P. Marshall and J. Price, Composites 22 (1991) 53.CrossRefGoogle Scholar
  44. 44.
    R. Vidamo and D. B. Fischbach, J. Am. Ceram. Soc. 61 (1980) 13.CrossRefGoogle Scholar
  45. 45.
    H. Sakata, M. Dresselhaus and M. Endo, in “Proceedings of the 18th Carbon Conference” Worcester Polytechnic Institute, Worcester MA. 1987 (Worcester Polytechnic Institute) 18.Google Scholar
  46. 46.
    J.-B. Donnet and R. C. Bansal, “Carbon Fibres” (Marcel Dekker, New York, Basel, 1984).Google Scholar
  47. 47.
    C. Galiotis and D. N. Batchelder, J. Mater. Sci. Lett. 7 (1988) 545.CrossRefGoogle Scholar
  48. 48.
    G. Désarmot and J. P. Favre, Compos. Sci. Technol, 42 (1991) 151.CrossRefGoogle Scholar
  49. 49.
    M. R. Piggott and D. Andison, J. Reinf. Plast. Compos. 6 (1987) 290.CrossRefGoogle Scholar
  50. 50.
    D. Hull, “An Introduction to Composite Materials” (Cambridge University Press, Cambridge, 1981).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • X. H. Gu
    • 1
  • R. J. Young
    • 1
  • R. J. Day
    • 1
  1. 1.Manchester Materials Science CentreUMIST/University of ManchesterManchesterUK

Personalised recommendations