Journal of Materials Science

, Volume 30, Issue 6, pp 1405–1408 | Cite as

R-curve effect on strength and reliability of toughened ceramic materials

  • K. Duan
  • Y. -W. Mai
  • B. Cotterell


An improved theoretical analysis is presented for the strength and mechanical reliability of ceramic materials with an R-curve characteristic. There is good agreement between the predicted flexural strength distribution of an Al2O3/ZrO2 ceramic and experimental datA. Unlike the conventional two-parameter Weibull approach, this new analysis is able to predict the non-linearity observed in the lnln 1/(1−Pf) versus In σf strength distribution curve. Compared to the untoughened Griffith material, the R-curve material has higher strength and better strength reliability.


Polymer Experimental datA Theoretical Analysis Material Processing Flexural Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Weibull, Ing. Veterskaps Aka. Hanal. 151 (1939) 1.Google Scholar
  2. 2.
    Idem, J. Appl. Mech. ASME 18 (1951) 293.Google Scholar
  3. 3.
    K. Kendall, N. McN. Alford, S. R. Tan and J. D. Birchall, J. Mater. Res. 1 (1986) 120.CrossRefGoogle Scholar
  4. 4.
    K. Kendall, N. McN. Alford and J. D. Birchall, in “Materials Research Society Symposia Proceedings”, Vol. 78, “Advanced Structural Ceramics”, edited by P. F. Becher, M. V. Swain and S. SÕmiya (Materials Research Society, Pittsburgh, PA, 1987) pp. 189–97.Google Scholar
  5. 5.
    R. F. Cook and D. R. Clarke, Acta Metall. 36 (1988) 555.CrossRefGoogle Scholar
  6. 6.
    D. K. Shetty and J. S. Wang, J. Am. Ceram. Soc. 72 (1989) 1158.CrossRefGoogle Scholar
  7. 7.
    N. Ramachandran, L. Y. Chao and D. K. Shetty, ibid. 76 (1993) 961.CrossRefGoogle Scholar
  8. 8.
    P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y. W. Mai and B. J. Hocky, ibiD. 70 (1987) 279.CrossRefGoogle Scholar
  9. 9.
    Y. W. Mai and B. R. Lawn, ibid. 70 (1987) 289.CrossRefGoogle Scholar
  10. 10.
    T. B. Troczynski and P. S. Nicholson, ibid. 68 (1985) C-277.CrossRefGoogle Scholar
  11. 11.
    K. Duan, Y. W. Mai and B. Cotterell, Key Eng. Mater. 48–50 (1990) 53.Google Scholar
  12. 12.
    K. Duan, PhD thesis, The University of Sydney (1993).Google Scholar
  13. 13.
    R. A. Hunt and L. N. McCartney, Int. J. Fract. 15 (1979) 365.Google Scholar
  14. 14.
    A. G. Atkins and Y. W. Mai, “Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials” (Ellis Horwood Halsted Press, Chichester, New York, 1985).Google Scholar
  15. 15.
    R. C. Garvie and M. F. Goss, in “Advanced Ceramics II”, edited by S. SÕmiya (Elsevier, London, 1988) pp. 69–87.Google Scholar
  16. 16.
    K. Duan, Y. W. Mai, M. V. Swain and B. Cotterell, Key Eng. Mater. 48–50 (1990) 130.Google Scholar
  17. 17.
    K. Duan, Y. W. Mai and B. Cotterell, in “25th National Symposium on Fracture Mechanics”, ASTM, 29 June–1 July 1993, Bethlehem, PA. (Also to be published in ASTM special publication STP 1220.)Google Scholar
  18. 18.
    K. Duan, Y-W Mai and B. Cotterell, in “8th International Conference of Fracture”, (ICF-8) 8–14 June 1993, Kiev, Ukraine.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • K. Duan
    • 1
  • Y. -W. Mai
    • 1
  • B. Cotterell
    • 2
  1. 1.Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic EngineeringThe University of SydneyNew South WalesAustralia
  2. 2.Department of Mechanical and Production EngineeringNational University of SingaporeSingapore

Personalised recommendations