Advertisement

Journal of Materials Science

, Volume 30, Issue 6, pp 1397–1404 | Cite as

In-situ electrical resistivity measurements: study of magnetic and phase transitions and solid-HDDR processes in Nd-Fe-B-type alloys

  • O. Gutfleisch
  • I. R. Harris
Papers

Abstract

Nd-Fe-B-type alloys have been characterized by means of in-situ electrical resistivity measurements. The potential of this technique for monitoring various phenomena relevant to the hydrogenation, disproportionation, desorption and recombination (HDDR) processing of Nd-Fe-B-type alloys is assessed, together with an evaluation of its capacity for delineating magnetic and phase transitions. The effects of external parameters, such as hydrogen pressure and processing temperature, and of intrinsic parameters, such as alloy composition and initial microstructure, on the kinetics of the solid-HDDR process have been investigated. It was found that the amount of neodymium-rich intergranular phase present in the material had a significant influence on the rates of disproportionation and recombination reactions. At 620‡C, the recombination process takes place as a solid-solid reaction, and this has a marked effect on the reaction rate. It was also found that the disproportionation process is very sensitive to the hydrogen pressure and the dependence of the overall process on the processing temperature between 620 and 900‡C has been determined.

Keywords

Microstructure Phase Transition Recombination Electrical Resistivity Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Gencer and I. I. Harris, J. Mater. Sci. 26 (1991) 6625.CrossRefGoogle Scholar
  2. 2.
    O. Gutfleisch, M. Verdier, I. R. Harris and A. E. Ray, IEEE Trans. Magn. 29 (1993) 2872.CrossRefGoogle Scholar
  3. 3.
    O. Gutfleisch, M. Verdier and I. R. Harris, J. Alloys Compos. 196 (1993) L19.CrossRefGoogle Scholar
  4. 4.
    F. Ahmed, O. Gutfleisch and I. R. Harris, IEEE Trans. Magn. 30 (1994) 616.CrossRefGoogle Scholar
  5. 5.
    I. R. Harris, in “Proceedings of the 12th International Workshop on Rare-Earth Magnets and their Applications” University of Western Australia, Canberra, Australia (1992) p. 347.Google Scholar
  6. 6.
    T. Takeshita and R. Nakayama, ibid.in “, p. 67.Google Scholar
  7. 7.
    P. J. McGuiness, E. J. Devlin, I. R. Harris, E. Rozendaal and J. Ormerod, J. Mater. Sci. 24 (1989) 2541.CrossRefGoogle Scholar
  8. 8.
    O. Gutfleisch, N. Martinez, M. Verdier and I. R. Harris, J. Alloys Compos. 204 (1994) L21.CrossRefGoogle Scholar
  9. 9.
    O. Gutfleisch, M. Matzinger, J. Fidler, N. Martinez and I. R. Harris, in “Proceedings of the 8th International Symposium on Magnetic Anisotropy and Coercivity in Rare-Earth-Transition Metal Alloys”, Birmingham, UK, September 1994, p. 243.Google Scholar
  10. 10.
    C. Mueller, B. Reinsch and G. Petzow, Z. Metallkd. 83 (1992) 845.Google Scholar
  11. 11.
    G. Schneider, E. T. Henig, G. Petzow and H. H. Stadelmaier, ibid. 77 (1986) 755.Google Scholar
  12. 12.
    D. Book and I. R. Harris, IEEE Trans. Magn. 28 (1992) 2145.CrossRefGoogle Scholar
  13. 13.
    X. J. Zhang, P. J. McGuiness and I. R. Harris, J. Appl. Phys. 69 (1991) 5838.CrossRefGoogle Scholar
  14. 14.
    D. Book and I. R. Harris, in “Proceedings of the 8th International Symposium on Magnetic Anisotropy and Coercivity in Rare-Earth-Transition Metal Alloys”, Birmingham, UK, September 1994, p. 205.Google Scholar
  15. 15.
    O. Gutfleisch, N. Martinez, M. Verdier, and I. R. Harris, J. Alloys Compos., 215 (1994) 227.CrossRefGoogle Scholar
  16. 16.
    P. J. McGuiness, I. R. Harris, U. D. Scholz and H. Nagel, Z. Phys. Chem. Neue Folge 163 (1989) 687.CrossRefGoogle Scholar
  17. 17.
    N. Martinez, D. G. R. Jones, O. Gutfleisch, D. Lavielle, D. Pere and I. R. Harris, in “6th MMM-Intermag Conference 1994” Albuquerque, New Mexico, USA, J. Appl. Phys. to be published.Google Scholar
  18. 18.
    K. A. Gschneidner and Leroy Eyring, “Handbook on the Physics and Chemistry of Rare Earths, Vol. 3 (North-Holland, Amsterdam, 1979) p. 229.Google Scholar
  19. 19.
    R. C. Heckman and C. R. Hills, Bull. Am. Phys. Soc 10 (1965) 126.Google Scholar
  20. 20.
    C. Ohki, H. Uchida and E. Ko, J. Jpn Inst. Metals 54 (1990) 146.CrossRefGoogle Scholar
  21. 21.
    K. H. J. Buschow, P. C. P. Bouten and A. R. Meidema, Rep. Prog. Phys. 45 (1982) 937.CrossRefGoogle Scholar
  22. 22.
    T. Takeshita and R. Nakayama, in “Proceedings of the 11th International Workshop on Rare-Earth Magnets and their Applications” Pittsburgh, PA, edited by S. G. Sankar, Carnegie Mellon University (1990) p. 49.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • O. Gutfleisch
    • 1
  • I. R. Harris
    • 1
  1. 1.School of Metallurgy and Materials ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations