Journal of Materials Science

, Volume 31, Issue 7, pp 1779–1788 | Cite as

Microscopic aspects of polymer-metal epitaxy

  • K. D. JandtEmail author
  • M. Buhk
  • J. Petermann


The textured oriented overgrowth (epitaxy) of certain metals evaporated on to substrates consisting of highly oriented ultra-thin thermoplastic polymer films has been known for a few years. However, the origin of the observed epitaxy was not clear: the formation of a chemical interface layer, classic epitaxy or graphoepitaxy (artificial epitaxy) all seemed to be possible explanations for the observed orientations. We have used the complementary methods of transmission electron microscopy (TEM) and scanning force microscopy (SFM) to investigate aspects of the polymer-metal epitaxy. Our investigations show that the bulk morphologies of polymer substrates determine their surface topographic properties. Highly oriented surface steps serve as suitable locations for an oriented growth of the evaporated metals. The results of the investigations suggest artificial epitaxy (graphoepitaxy) as an effective orientation mechanism for the oriented metallic growth on polymer substrates.


Scanning Force Microscopy Polymer Film Interface Layer Polymer Substrate Complementary Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Beneking, “Halbleiter-Technologie” (Teubner, Stuttgart, 1991) pp. 88–149.Google Scholar
  2. 2.
    J. W. Matthews, “Epitaxial Growth” (Academic Press New York, London, Toronto, Sydney, San Francisco, 1975).Google Scholar
  3. 3.
    J. Petermann and G. Broza, J. Mater. Sci. 22 (1987) 1108.CrossRefGoogle Scholar
  4. 4.
    J. M. Schultz and S. K. Peneva, J. Polym. Sci. Part B Polym. Phys. 25 (1987) 185.CrossRefGoogle Scholar
  5. 5.
    J. Petermann, A. Werner and H. Hibst, Patent DE 3608267 A1 (1986).Google Scholar
  6. 6.
    T. Hoffmann, Ph D thesis, Technische Universität Hamburg-Harburg, Germany (1993).Google Scholar
  7. 7.
    M. W. Geis, D. C. Flanders and H. I. Smith, Appl. Phys. Lett. 35 (1979) 71.CrossRefGoogle Scholar
  8. 8.
    M. Jung, U. Baston, P. Steiner and J. Petermann, J. Mater. Sci. 26 (1991) 5467.CrossRefGoogle Scholar
  9. 9.
    J. M. Schultz and S. K. Peneva, “RHEED Investigation of Thin Tin Films on Polypropylen”, APS-meeting Bulletin, Las Vegas (American Physica Society, 1986) 511.Google Scholar
  10. 10.
    J. Petermann and R. M. Gohil, J. Mater. Sci 14 (1979) 2260.CrossRefGoogle Scholar
  11. 11.
    B. Wunderlich “Macromolecular Physics”, Vol. 1, “Crystal Structure, Morphology, Defects” (Academic Press, New York, London, Toronto, Sydney, San Francisco, 1973).Google Scholar
  12. 12.
    K. Wenderoth, A. Karbach and J. Petermann, Coll. Polym. Sci. 263 (1985) 301.CrossRefGoogle Scholar
  13. 13.
    K. D. Jandt, M. Buhk, M. J. Miles and J. Petermann, Polymer 35 (1994) 2458.CrossRefGoogle Scholar
  14. 14.
    K. D. Jandt, “Untersuchungen zur Polymer-Metall-Epitaxie in Computersimulation und Experiment”, Fortschr.-Ber. VDI Reihe 5 no. 302 (VDI, Düsseldorf, 1993).Google Scholar
  15. 15.
    L. M. Eng, H. Fuchs, K. D. Jandt and J. Petermann, Helv. Phys. Acta 65 (1992) 870.Google Scholar
  16. 16.
    L. M. Eng, K. D. Jandt, H. Fuchs and J. Petermann, Appl. Phys., A59 (1994) 145.CrossRefGoogle Scholar
  17. 17.
    K. D. Jandt, T. McMaster, M. J. Miles, and J. Petermann, Macromolecules 26 (1993) 6552.CrossRefGoogle Scholar
  18. 18.
    G. Natta, P. Corradini and I. W. Bassi, Nuovo Cimento Suppl. 15 (1960) 52.CrossRefGoogle Scholar
  19. 19.
    K. D. Jandt, L. M. Eng, J. Petermann and H. Fuchs, Polymer 24 (1992) 5331.CrossRefGoogle Scholar
  20. 20.
    M. J. Hill, P. J. Barham and A. Keller, Polym. Sci. 258 (1980) 1023.Google Scholar
  21. 21.
    M. J. Hill and A. Keller, Coll. Polym. Sci. 259 (1981) 335.CrossRefGoogle Scholar
  22. 22.
    J. H. Magill, In “Treatise on Material Science and Technology”, edited by J. M. Schultz, Vol. 10, Part A (Academic Press, New York, 1977) p. 142.Google Scholar
  23. 23.
    T. Osaka, T. Kawana, T. Noijiama and K. Heinemann, J. Cryst. Growth 61 (1983) 509.CrossRefGoogle Scholar
  24. 24.
    J. R. Reffner, E. L. Thomas and J. Petermann, unpublished data (1991).Google Scholar
  25. 25.
    S. L. Vogel and H. Schonhorn, J. Appl. Phys. 23 (1979) 495.Google Scholar
  26. 26.
    G. Scherer, Dissertation D386, Kaiserslautern University, Germany (1985).Google Scholar
  27. 27.
    B. Dolezel, “Die Beständigkeit von Kunststoffen und Gummi” (Carl Hanser, München, Wien, 1978) p. 392.Google Scholar
  28. 28.
    W. Espe, “Werkstoffkunde der Hochvakuumtechnik”, Bd. 1, “Metalle und metallisch leitende Werkstoffe” (VEB Deutscher verlag der Wissenschaften, Berlin, 1960) 879 f.Google Scholar
  29. 29.
    “Table of Periodic Properties of the Elements”, (Sargent-Welch Scientific Company, Skokie, Il, 1980).Google Scholar
  30. 30.
    T. Osaka, T. Kawana, T. Noijiama, K. Heinemann, J. Cryst. Growth 61 (1983) 509.CrossRefGoogle Scholar
  31. 31.
    T. Osaka, Y. Kasukabe and H. Nakamura, ibid.69 (1984) 149.CrossRefGoogle Scholar
  32. 32.
    T. Osaka and Y. Kasukabe, ibid.73 (1985) 10.CrossRefGoogle Scholar
  33. 33.
    Y. Kasukabe and T. Osaka, Thin Solid Films 146 (1987) 175.CrossRefGoogle Scholar
  34. 34.
    T. Osaka and Y. Kasukabe, in “Proceedings of the First Topical Meeting on Crystal Growth Mechanisms” (Izu Nagaoka, 1989) p. 87.Google Scholar
  35. 35.
    P.-M. Klews, R. Anton and M. Harsdorff, J. Cryst. Growth 71 (1985) 491.CrossRefGoogle Scholar
  36. 36.
    Idem,, J. Vac. Sci. Technol. A 5 (1987) 1931.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Bard HallCornell UniversityIthacaUSA
  2. 2.Fachbereich Chemietechnik, Lehrstuhl für WerkstoffkundeUniversität DortmundDortmundGermany

Personalised recommendations