Advertisement

Journal of Materials Science

, Volume 31, Issue 7, pp 1703–1706 | Cite as

A study of spinodal decomposition in Ni-30 at% Cu and Cu-46 at% Ni-4 at% Fe alloys using electrical resistivity measurements

  • V. M. López Hirata
  • K. -I. Hirano
Article

Abstract

The spinodal decomposition in Ni 30 at% Cu and Cu-46 at% Ni-4 at% Fe alloys has been investigated using electrical resistivity measurements. The electrical resistivity results, for ageing temperatures between 423 and 823 K, were analysed from the equation of change of electrical resistivity for spinodal decomposition in binary alloys proposed by Kolometz and Smirnov, together with the classical spinodal decomposition theory of Cahn. This analysis enabled us to obtain a plot of the amplification factor, R(β), as a function of temperature. From this plot, the coherent spinodal temperatures for Ni-30 at% Cu and Cu-46 at% Ni-4 at% Fe alloys were found at 590 and 790 K, respectively, and are in good agreement with experimental and theoretical values reported by other authors.

Keywords

Polymer Electrical Resistivity Material Processing Binary Alloy Resistivity Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Elford, F. Muller and O. Kubachewsky, Ber.Busenges. 73 (1969) 601.Google Scholar
  2. 2.
    D. G. Kim and W. K. Choo, Scripta Metall. 19 (1985) 1415.CrossRefGoogle Scholar
  3. 3.
    S. Mey, Z. Metallkde 78 (1987) 502.Google Scholar
  4. 4.
    W. Wagner, R. Poerschke and W. Wollenberger, J. Phys. F Metal Phys. 12 (1982) 405.CrossRefGoogle Scholar
  5. 5.
    J. Aalders, C. van Dijk and S. Radelaar, in “Proceedings of the 2nd Acta-Scripta Metall. Conference On Early Stage Decompostion”, Sonnenberg, Germany, edited by P. Haasen, V. Gerold, R. Wagner and M. F. Ashby (Pergamon Press, Oxford, 1983) p. 149.Google Scholar
  6. 6.
    R. Poerschke, W. Wagner and H. Wollenberger, J. Phys. F Metal Phys. 16 (1986) 421.CrossRefGoogle Scholar
  7. 7.
    D. Kolometz and A. Smirnov, Fiz. Metal. Metalloved. 14 (1969) 3.Google Scholar
  8. 8.
    J. W. Cahn, Trans. Met. Soc. AIME 242 (1968) 166.Google Scholar
  9. 9.
    D. T. Spreng, J. E. Hilliard and J. W. Kauffman, J. Appl. Phys. 43 (1972) 2040.CrossRefGoogle Scholar
  10. 10.
    W. Schüle, P. Spindler and E. Lang, Z. Metallkde 66 (1975) 50.Google Scholar
  11. 11.
    P. L. Rosister, J. Phys. F Metal Phys. 11 (1981) 2105.CrossRefGoogle Scholar
  12. 12.
    K. B. Rundman and J. E. Hilliard, Acta Metall. 15 (1967) 1025.CrossRefGoogle Scholar
  13. 13.
    H. Mehrer, in “Diffusion in Metals and Alloys”, Landolt-Bornstein New Series (Springer, Berlin, 1990) p. 291.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • V. M. López Hirata
    • 1
  • K. -I. Hirano
    • 2
  1. 1.Institute Politécnico Nacional, ESIQIEMéxico, D.F.
  2. 2.Department of Materials ScienceTohoku UniversitySendaiJapan

Personalised recommendations