Journal of Materials Science

, Volume 31, Issue 7, pp 1689–1692 | Cite as

The structure and conductivity of LaMn1−zCrzO3 and (La, A)1−yMn1−zCrzO3 (A=Sr, Ca) as air cathodes in solid oxide fuel cells

  • M. B. Phillipps
  • N. M. Sammes
  • O. Yamamoto


Doped LaMnO3 systems are used as cathodes in solid oxide fuel cells, mainly due to their high electronic conductivity, thermal matching to the electrolyte material and good catalytic activity towards oxygen reduction. Lanthanum deficient LaMnO3 has been shown to have a higher electronic conductivity than stoichiometric LaMnO3, however, the material has been found to sinter more readily causing a reduction in the efficiency of the cathode. This paper discusses the effect of imparting non-stoichiometry to the LaMnO3 system with the incorporation of a B site dopant, Cr. The paper examines the effect on the conductivity and phase present with increased Cr content, and shows that Cr in LaMn1−zCrzO3, up to z=0.15, does not produce an unacceptably large decrease in the electronic conductivity, especially for a Ca doped, A site deficient system. Thus, a B site doped system is considered as a possible candidate for solid oxide fuel cell cathode systems.


Catalytic Activity Lanthanum Oxygen Reduction Solid Oxide Fuel Cell Good Catalytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. M. van Roosmalen and E. H. P. Cordfunke, J. Solid State Chem. 93 (1991) 212.CrossRefGoogle Scholar
  2. 2.
    S. Otoshi, H. Sasaki, H. Ohnishi, M. Hase, K. Ishimaru, M. Ippommatsu, T. Higuchi, M. Miyayama and H. Yanagida, J. Electrochem. Soc. 138 (1991) 1519.CrossRefGoogle Scholar
  3. 3.
    H. Yokokawa, N. Sakai, T. Kawada and M. Dokiya, Denki Kagaku 57 (1989) 821.Google Scholar
  4. 4.
    R. Hildrum, S. Aasland and Ø. Johannesen, Solid State Ionics 66 (1993) 207.CrossRefGoogle Scholar
  5. 5.
    M. Mori, N. Sakai, T. Kawada, H. Yokokawa and M. Dokiya, Denki Kagaku 58 (1990) 528.Google Scholar
  6. 6.
    Y. Takeda, O. Yamamoto, M. Noda and R. Kanno, J. Electrochem. Soc. 134 (1987) 2565.CrossRefGoogle Scholar
  7. 7.
    L. A. Chick, J. L. Bates, L. R. Pederson and H. E. Kissinger, in “Proceedings of the First International Symposium on Solid Oxide Fuel Cells”, Pennington N.J., 1989, edited by S.C. Singhal (The Electrochemical Society, Pennington N.J. 1989) p. 170.Google Scholar
  8. 8.
    F. S. Brugner and R. N. Blumenthal, J. Am. Ceram. Soc. 54 (1971) 57.CrossRefGoogle Scholar
  9. 9.
    Y. Takeda, S. Nakai, T. Kojima, R. Kanno, N. Imanishi, G. Q. Shen and O. Yamamoto, Mat. Res. Bull. 26 (1991) 153.CrossRefGoogle Scholar
  10. 10.
    S. A. Howard, J. Yau and H. U. Anderson, J. Am. Ceram. Soc. 75 (1991) 1685.CrossRefGoogle Scholar
  11. 11.
    J. A. M. van Roosmalen, P. Van Vlaanderen, E. H. P. Cordfunke, W. L. Ijdo and D. J. W. Ijdo, submitted to J. Solid State Chem. Google Scholar
  12. 12.
    J. A. M. Van Roosmalen, J. P. P. Huijsmans and L. Plomp, Solid State Ionics 66 (1993) 279.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • M. B. Phillipps
    • 1
  • N. M. Sammes
    • 1
  • O. Yamamoto
    • 2
  1. 1.Centre for TechnologyThe University of WaikatoHamiltonNew Zealand
  2. 2.Dept. of ChemistryMie UniversityTsuJapan

Personalised recommendations