Advertisement

Journal of Materials Science

, Volume 30, Issue 24, pp 6370–6376 | Cite as

Effects of surface oxide layers on crack initiation and growth of HSLA steel under cyclic loading in air and in ultrahigh vacuum

  • Y. W. Chung
  • W. J. Lee
Article

Abstract

Effects of the thermally grown wustite on the fatigue crack initiation and growth in HSLA steel are evaluated as a function of oxide thickness, strain amplitude, and gaseous environment in the push-pull plastic strain control mode, with special attention being given to the early stage of microcrack initiation. Specimens with a wustite surface layer thermally grown to 0.2 and 0.6 μm thicknesses show predominantly intergranular cracking at plastic strain amplitudes of 5×10−4 and 1×10−3 both in air and in ultrahigh vacuum (UHV), in contrast to the as-polished specimens where slip band cracking is the favoured mode. The cracking mode in the oxide layer is discussed in terms of the strain amplitude and the dislocation behaviour near the oxide/metal interface. The features of microcrack initiation in the oxide layer is not affected by the gaseous environment. Once, however, the surface oxide fractures, the rate of crack growth through the base metal is greatly reduced in UHV.

Keywords

Plastic Strain Oxide Layer Crack Initiation Strain Amplitude HSLA Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Roscoe, Phil. Mag. 21 (1936) 399.CrossRefGoogle Scholar
  2. 2.
    V. K. Sethi and R. Gibala, in “Surface Effects in Crystal Plasticity”, edited by R. M. Latanision and J. T. Fourie, NATO Advanced Study Institute Series, Series E, (Noordhoff, Leyden, 1977) p. 599.CrossRefGoogle Scholar
  3. 3.
    H. J. Gough and D. G. Sopwith, J. Inst. Metals 49 (1932) 93.Google Scholar
  4. 4.
    Idem, ibid. 52 (1935) 55.Google Scholar
  5. 5.
    C. M. Hudson and S. K. Seward, Eng. Frac. Mech. 8 (1976) 315.CrossRefGoogle Scholar
  6. 6.
    B. I. Verkin and N. M. Grinberg, Mater. Sci. Eng. 41 (1979) 149.CrossRefGoogle Scholar
  7. 7.
    R. Wang, H. Mughrabi, S. McGovern and M. Rapp, ibid. 65 (1984) 219.CrossRefGoogle Scholar
  8. 8.
    D. Majumdar and Y. W. Chung, Scripta Metall. 16 (1982) 791.CrossRefGoogle Scholar
  9. 9.
    C. Laird and G. C. Smith, Phil. Mag. 8 (1963) 1945.CrossRefGoogle Scholar
  10. 10.
    P. S. Maiya, Scripta Metall. 9 (1975) 1141.CrossRefGoogle Scholar
  11. 11.
    Idem, ibid. 11 (1977) 331.CrossRefGoogle Scholar
  12. 12.
    W. J. Lee, S. P. Bhat, Y. W. Chung and M. E. Fine, in Proceedings of the 3rd International Conference on Fatigue and Fatigue Thresholds: Fatigue '87, Vol. III, Charlottesville, June 1987, edited by R. O. Ritchie and E. A. Starke, Jr (EMAS, UK, 1987) p. 1211.Google Scholar
  13. 13.
    D. Majumdar, Ph. D. Diss., Dept. of Materials Sci. and Eng., Northwestern University, 1983.Google Scholar
  14. 14.
    W. J. Lee, J. P. Baker, Y. W. Chung and M. E. Fine, Rev. Sci. Instrum. 57 (1986) 2854.CrossRefGoogle Scholar
  15. 15.
    Y. H. Kim and M. E. Fine, Met. Trans. 13A (1982) 59.CrossRefGoogle Scholar
  16. 16.
    G. Gonzalez and C. Laird, ibid. 14A (1983) 2507.CrossRefGoogle Scholar
  17. 17.
    R. F. Mehl and E. F. McCandless, Trans. AIME 125 (1937) 531.Google Scholar
  18. 18.
    G. A. Beitel and E. Q. Bowles, J. Metal Sci. 5 (1971) 85.CrossRefGoogle Scholar
  19. 19.
    W. J. Baxter and S. R. Rouze, J. Appl. Phys. 49 (1978) 4233.CrossRefGoogle Scholar
  20. 20.
    T. K. G. Swami, Ph.D. Diss., Dept. of Materials Sci. and Eng., Northwestern University, 1981.Google Scholar
  21. 21.
    A. K. Head, Phil. Mag. 44 (1953) 92.CrossRefGoogle Scholar
  22. 22.
    Idem, Australian J. Phys. 13 (1960) 278.CrossRefGoogle Scholar
  23. 23.
    G. H. Conners, Int. J. Eng. Sci. 5 (1967) 25.CrossRefGoogle Scholar
  24. 24.
    R. Weeks, J. Dundurs and M. Stippes, Inst. J. Eng. Sci. 6 (1968) 365.CrossRefGoogle Scholar
  25. 25.
    C. V. Cooper and M. E. Fine, Met. Trans. 16A (1985) 641.CrossRefGoogle Scholar
  26. 26.
    J. S. Vermaak and J. H. van der Merwe, Phil. Mag. 10 (1964) 785.CrossRefGoogle Scholar
  27. 27.
    C. V. Cooper, Ph.D. Diss. Dept. of Materials Sci. and Eng., Northwestern University, 1983.Google Scholar
  28. 28.
    J. C. Grosskreutz, Surf. Sci. 8 (1967) 173.CrossRefGoogle Scholar
  29. 29.
    J. C. Grosskreutz and C. Q. Bowles, in “Environment-Sensitive Mechanical Behavior”, edited by A. R. C. Westwood and N. S. Stoloff (Gordon and Breach, New York/London, 1966) p. 67.Google Scholar
  30. 30.
    J. C. Grosskreutz, in “Corrosion Fatigue”, NACE-2 (1972) p. 201.Google Scholar
  31. 31.
    R. G. Gates and W. A. Wood, J. Inst. Metals 96 (1968) 242.Google Scholar
  32. 32.
    G. W. Stickley and J. O. Lyst, J. Mater. 1 (1966) 19.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Y. W. Chung
    • 1
  • W. J. Lee
    • 2
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of Electronic Materials EngineeringKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations