Journal of Materials Science

, Volume 30, Issue 24, pp 6363–6369 | Cite as

Carbothermal production of β′-sialon from alumina, silica and carbon mixture

  • M. Sopicka-Lizer
  • R. A. Terpstra
  • R. Metselaar


Mixtures of pure nanometer-sized amorphous silica and γ-alumina with the atomic ratio Si∶Al=1 were reduced by a stoichiometric amount of carbon between 1100 and 1450 °C in flowing nitrogen in order to produce β′-sialon powder. Using aqueous suspensions of starting materials, compacts with different microstructures were prepared for reaction. Silica reduction to SiO occurred at a temperature as low as 1300 °C and part of it was removed with flowing nitrogen. Carbothermal reaction involving nitrogen stated at 1350 °C and Si2N2O was found as an intermediate together with SiC, resulting in β′-sialon formation. Loss of silica from the system led to AlN formation. Decomposition of β′-sialon into sialon polytypoids (15R, 12H) was observed as a result of sialon and AlN reaction at 1450 °C. The reaction rate of sialon formation was slowed down compared to the carbothermal reduction of kaolin because of the lack of impurities. The microstructure of the reacted pellets influenced the reaction products, and the narrow pore size distribution as well as good homogeneity enhanced β′-sialon formation.


Microstructure Pore Size Distribution Kaolin Atomic Ratio Aqueous Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. H. Jack, J. Mater. Sci. 11 (1976) 1135.CrossRefGoogle Scholar
  2. 2.
    J. G. Lee and I. B. Cutler, Ceram. Bull. 58 (1979) 869.Google Scholar
  3. 3.
    I. Higgins and A. Hendry, Brit. Ceram. Trans. J. 85 (1986) 161.Google Scholar
  4. 4.
    J. B. Baldo, V. C. Pandolfelli and J. R. Casarini, in “Ceramic Powders”, edited by P. Vincenzini, (Elsevier, Amsterdam, 1983) p. 437.Google Scholar
  5. 5.
    F. K. van Dijen, PhD thesis, Eindhoven University of Technology (1986).Google Scholar
  6. 6.
    F. K. van Dijen, R. Metselaar and C. A. M. Siskens, J. Amer. Ceram. Soc. 68 (1985) 16.CrossRefGoogle Scholar
  7. 7.
    E. Kokmeijer, PhD thesis, Eindhoven University of Technology (1990).Google Scholar
  8. 8.
    A. M. van Neerven, F. Bloomer and R. Metselaar, in Proceedings of the First European Ceramics Society Conference, Maastricht, June 1989, Vol. 1, edited by G. de With, R. A. Terpstra and R. Metselaar (Elsevier, London, 1989) p. 572.Google Scholar
  9. 9.
    M. E. Bowden, K. J. D. Mackenzie and J. H. Johnston, in “Ceramic Developments, Materials Science Forum”, Vol. 34–36, edited by C. C. Sorrel and B. Ben-Nissan (Trans. Tech. Publications Ltd., Switzerland, 1988).Google Scholar
  10. 10.
    T. Bastow, S. G. Hardin and T. W. Turkey, J. Mater. Sci. 26 (1991) 1443.CrossRefGoogle Scholar
  11. 11.
    C. M. Cardile, M. E. Bowden, in “Ceramic Developments, Materials Science Forum”, Vol. 34–36, edited by C. C. Sorrel, B. Ben-Nissan (Trans. Tech. Publications Ltd., Switzerland, 1988) p. 611.Google Scholar
  12. 12.
    H. Smolik and J. Czechowski, Materialy Ogniotrwate 2 (1991) 29.Google Scholar
  13. 13.
    H. Yoshimatsu, T. Yabuki and H. Mihashi, J. Ceram. Soc. Jpn. Int. 95 (1987) 544.Google Scholar
  14. 14.
    H. van Olphen, “An Introduction to Clay Colloid Chemistry” (Interscience, New York, 1963) p. 29.Google Scholar
  15. 15.
    C. Bernhard, Adv. Colloid Interface Sci. 29 (1988) 79.CrossRefGoogle Scholar
  16. 16.
    F. H. Chung, J. Appl. Crystallog. 7 (1974) 526.CrossRefGoogle Scholar
  17. 17.
    Idem, ibid. 8 (1974) 17.CrossRefGoogle Scholar
  18. 18.
    Y. W. Cho and J. A. Charles, Mater. Sci. Technol. 7 (1991) 399.CrossRefGoogle Scholar
  19. 19.
    J. G. Lee and J. B. Cutler in “Nitrogen Ceramics,” edited by F. L. Riley (Noordhoff, Leyden, 1977) p. 175.CrossRefGoogle Scholar
  20. 20.
    M. Bolech, R. Metselaar, F. K. van Dijen, F. Blomer, G. de With, and P. P. J. Ramaekers, in “High Technology Ceramics”, edited by P. Vinzenzini (Elsevier, Amsterdam, 1987) p. 527.Google Scholar
  21. 21.
    M. Hillert, S. Jonsson and B. Sundman, Z. Metallkde 83 (1992) 648.Google Scholar
  22. 22.
    Y. Tuohino, R. Laitinen and K. Torbkel, in “Ceramic Powder Science III”, edited by S. L. Messing (American Ceramic Society, Westerville, OH, 1990) p. 329.Google Scholar
  23. 23.
    S. J. P. Durcham, and K. Shanker and R. A. L. Drew, J. Amer. Ceram. Soc. 74 (1991) 31.CrossRefGoogle Scholar
  24. 24.
    S. Bandyopadhyay and J. Mukerji, Ceram. Int. 18 (1992) 307.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Sopicka-Lizer
    • 1
  • R. A. Terpstra
    • 1
  • R. Metselaar
    • 1
  1. 1.Centre for Technical CeramicsEindhoven University of TechnologyMB EindhovenThe Netherlands

Personalised recommendations