Advertisement

Journal of Materials Science

, Volume 30, Issue 24, pp 6316–6328 | Cite as

Stress-strain behaviour of nitrogen bearing austenitic stainless steels in the temperature range 298–473 K

  • A. P. Singh
  • G. M. D. Murty
  • Sudhaker Jha
Article
  • 66 Downloads

Abstract

The stress-strain behaviour of three nitrogen-bearing low-nickel austenitic stainless steels has been investigated via a series of tensile tests in the temperature range 298–473 K at an initial strain rate of 1.6×10−5s−1. Experimental stress-strain data were analysed employing Rosenbrock's minimization technique in terms of constitutive equations proposed by Hollomon, Ludwik, Voce and Ludwigson. Ludwigson's equation has been found to describe the flow behaviour accurately, followed by Voce's equation. The resultant strain-hardening parameters were analysed in terms of variations in temperature. A linear relationship between ultimate tensile stress and the Ludwigson parameters has been established. The influence of nitrogen on the Ludwigson modelling parameters has also been explained.

Keywords

Nitrogen Polymer Stainless Steel Linear Relationship Tensile Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

σ

True stress

ɛt

True strain

ɛf

True fracture strain

έ

Strain rate

T

Temperature

KH, nH

Hollomon parameters

KL, nL

Ludwik parameters

K1L, k2L, n1L, n2L

Ludwigson parameters

σs, KV, nV

Voce parameters

ɛu relation

Uniform strain computed from a particular relation

ɛL

Transient strain

σ0

Flow stress at zero plastic strain (Ludwik)

σL

Transient stress

σy

Yield stress

σu

Ultimate tensile stress

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Reichel, B. Gabriel, M. Kesten, B. Meier and W. Dahl, Steel Res. 60 (1989) 464.CrossRefGoogle Scholar
  2. 2.
    T. Angel, J. Iron Steel Inst. 177 (1954) 165.Google Scholar
  3. 3.
    P. L. Magonon Jr and G. Thomas, Metall. Trans. 1 (1970) 1577.CrossRefGoogle Scholar
  4. 4.
    Idem, ibid. 1 (1979) 1587.CrossRefGoogle Scholar
  5. 5.
    G. P. Sanderson and D. T. Leewellyn, J. Iron Steel Inst. 207 (1969) 1129.Google Scholar
  6. 6.
    P. M. Kelly, Acta Metall. 13 (1965) 635.CrossRefGoogle Scholar
  7. 7.
    G. B. Olson, in “Deformation, processing and structure”, edited by G. Krauss (ASM, Metals Park, OH, 1984) pp. 391, 424.Google Scholar
  8. 8.
    S. S. Hecker, M. G. Stout, K. P. Staudhamner and J. L. Smith, Metall. Trans. 13 (1982) 619.CrossRefGoogle Scholar
  9. 9.
    G. L. Huang, D. K. Metlock and G. Krauss, ibid. 20 (1989) 1239.CrossRefGoogle Scholar
  10. 10.
    X. F. Fang and W. Dahl, Mater. Sci. Eng. 141 (1991) 189.CrossRefGoogle Scholar
  11. 11.
    J. H. Hollomon, Trans. AIME 162 (1945) 268.Google Scholar
  12. 12.
    P. Ludwik, “Elemente der technologischen mechanik” (Von Julius, Springer, Leipzig, 1909) p. 32.CrossRefGoogle Scholar
  13. 13.
    H. W. Swift, J. Mech. Phys. Solids 1 (1952) 1.CrossRefGoogle Scholar
  14. 14.
    E. Voce, J. Inst. Metals 74 (1948) 537.Google Scholar
  15. 15.
    D. C. Ludwigson, Metall Trans. 2 (1971) 2825.CrossRefGoogle Scholar
  16. 16.
    R. E. Reed Hill, W. R. Cribb and S. N. Monteiro, ibid. 4 (1973) 2665.CrossRefGoogle Scholar
  17. 17.
    H. J. Kleemola and M. A. Nieminen, ibid. 5 (1974) 1863.CrossRefGoogle Scholar
  18. 18.
    Y. Tomita and K. Okabayashi, ibid. 16 (1984) 2247.CrossRefGoogle Scholar
  19. 19.
    S. Mattiazzi, G. Pilatti and D. Boerman, "Mechanical behaviour and nuclear application of stainless steels at elevated temperatures (TMS, London, 1982) pp. 194–202.Google Scholar
  20. 20.
    M. G. Stout and P. S. Follansbee, J. Eng. Mater. Technol. (Trans. ASME) 108 (1986) 344.CrossRefGoogle Scholar
  21. 21.
    S. V. Ramani and P. Rodriguez, Scripta Metall. 4 (1970) 755.CrossRefGoogle Scholar
  22. 22.
    H. H. Rosenbrock, Computer J. 3 (1963) 75.Google Scholar
  23. 23.
    N. S. Mishra, Sanak Mishra and V. Ramaswamy, Metall. Trans. 20 (1989) 2819.CrossRefGoogle Scholar
  24. 24.
    G. Zenkle, Naturerscher. 18 (1963) 795.Google Scholar
  25. 25.
    W. B. Morrison, Metall. Trans. 2 (1971) 331.CrossRefGoogle Scholar
  26. 26.
    Y. Bergstorm and B. Aronsson, ibid. 1 (1970) 1029.Google Scholar
  27. 27.
    M. Atkinson, J. Aust. Inst. Met. 22 (1977) 183.Google Scholar
  28. 28.
    B. K. Jha, R. Avtar, V. S. Dwivedi and V. Ramaswamy, J. Mater. Sci. Lett. 6 (1987) 891.CrossRefGoogle Scholar
  29. 29.
    M. Atkinson, Metall. Trans. 15 (1984) 1185.CrossRefGoogle Scholar
  30. 30.
    W. Truszkowski, Mem. Sci. Rev. Metall. 77 (1980) 193.CrossRefGoogle Scholar
  31. 31.
    Kanji Ono, Metall. Trans. 3 (1972) 749.CrossRefGoogle Scholar
  32. 32.
    H. Mecking in “Strength of metals and alloys” ICSMA-5, edited by P. Haasen, V. Gerold and G. Kostrotz (Pergamon Press, New York, 1980) pp. 1573–94.Google Scholar
  33. 33.
    J. R. Low and F. Garofalo, Proc. Soc. Stress Anal. 4 (1947) 16.Google Scholar
  34. 34.
    A. G. Griffths and J. C. Wright, Iron Steel Inst. 117 (1969) 51.Google Scholar
  35. 35.
    D. L. Baragar, J. Mech. Working Technol. 14 (1987) 295.CrossRefGoogle Scholar
  36. 36.
    U. F. Kocks, J. Eng. Mater. Technol. (Trans. ASME) 98 (1976) 76.CrossRefGoogle Scholar
  37. 37.
    G. Gottstein and A. S. Argon, Acta Metall. 35 (1987) 1261.CrossRefGoogle Scholar
  38. 38.
    Y. Estrin and H. Mecking, ibid. 32 (1984) 57.CrossRefGoogle Scholar
  39. 39.
    J. O. Nilson, Fatigue Eng. Mater. Struct. 7 (1984) 55.CrossRefGoogle Scholar
  40. 40.
    S. Degallaix, R. Taillard and J. Foct, in “Fatigue 84, Proceedings of the 2nd International Conference on Fatigue and Fatigue Thresholds”, Birmingham, edited by C. J. Beevers, J. Backlund, A. F. Blom, P. Lucäs, J. Schijke and R. O. Ritchie (Materials Advisory Services Ltd, Warley, 1984) p. 49.Google Scholar
  41. 41.
    S. Degallaix, in “Basic mechanism in fatigue of metals”, edited by P. Lucas and J. Polak (Academia, Prague, 1988) p. 65.Google Scholar
  42. 42.
    R. E. Stolz and J.B. Van Der Sande, Metall. Trans. 11 (1980) 1033.CrossRefGoogle Scholar
  43. 43.
    R. E. Schramm and R. P. Reed, ibid. 6 (1975) 1345.CrossRefGoogle Scholar
  44. 44.
    G. Thomas, ibid. 11 (1963) 1369.Google Scholar
  45. 45.
    B. C. Odegard, A. J. West and J. A. Brooks, in “Effect of hydrogen on behaviour of materials”, edited by A. W. Thomson and J. M. Berstein (AIME, New York, 1976) p. 116.Google Scholar
  46. 46.
    J. B. Vogt, T. Magnin and J. Foct, in “Procedings of the Conference on High Nitrogen Steels”, edited by G. Stein and H. Witulski (StahLeisen, Dusseldorf, 1990) p. 47.Google Scholar
  47. 47.
    J. Friedel, “Dislocations”, International Series of Monographs on Solid State Physics, Vol. 3 (Pergamon, Oxford, 1967) ch. XIII and XIV.Google Scholar
  48. 48.
    D. Kuhlmann-Wilsdorf and C. Laird, Mater. Sci. Eng. 17 (1979) 111.CrossRefGoogle Scholar
  49. 49.
    A. H. Cottrell, “Dislocations and flow in crystals” (Oxford University Press, London, 1953) p. 111.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. P. Singh
    • 1
  • G. M. D. Murty
    • 1
  • Sudhaker Jha
    • 1
  1. 1.Research and Development Centre for Iron and SteelSteel Authority of India LtdRanchiIndia

Personalised recommendations