Advertisement

Journal of Materials Science

, Volume 30, Issue 24, pp 6309–6315 | Cite as

Elevated temperature deformation of several quaternary L12Al3Ti based alloys reinforced with TiB2 particles

  • J. D. Whittenberger
  • K. S. Kumar
  • M. S. Dipietro
  • S. A. Brown
Article
  • 26 Downloads

Abstract

Concurrent with an investigation of quaternary cast and forged L12 modified Al3Ti's containing 9 at% Cr, Fe and/or Mn, a similar series of four alloys was produced via XDTM technology, whereby 20 vol% of ∼ 0.5 μm TiB2 particles was incorporated as a reinforcement. Following densification by hot pressing and slow isothermal forging, small diameter compression test samples were machined from each compact and tested. The 0.2% yield strength measurements revealed a strength advantage for the particulate reinforced materials over the unreinforced ingot metallurgy matrices to about 1175 K. Furthermore, 900 and 1100 K constant velocity testing indicated that the TiB2 containing materials were stronger than the ingot metallurgy matrices down to strain rates of ∼ 10−7s−1. None of the quaternary L12 alloys + 20 TiB2 consistently displayed a strength advantage over others. However, extrapolation of the present mechanical property data into slower strain regimes indicated that the composites will not possess any strength advantage overthe unreinforced versions. Such losses in strength appeared to be caused by small grains in the particulate reinforced alloys, which promoted grain boundary weakening mechanisms.

Keywords

Yield Strength Compression Test Temperature Deformation Property Data Strength Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Kumar and C. T. Liu, J. Mater. 45 (1993) 28.Google Scholar
  2. 2.
    Y. Nakayama and H. Mabuchi, Intermetallics 1 (1993) 41.CrossRefGoogle Scholar
  3. 3.
    L. J. Parfitt, J. M. Smialek, J. P. Nic and D. E. Mikkola, Scripta Metall. Mater. 25 (1991) 727.CrossRefGoogle Scholar
  4. 4.
    K. S. Kumar and S. A. Brown, Philos. Mag. A 65 (1992) 91.CrossRefGoogle Scholar
  5. 5.
    S. A. Brown, K. S. Kumar and J. D. Whittenberger, Scripta Metall Mater. 24 (1990) 2001.CrossRefGoogle Scholar
  6. 6.
    M. S. Dipietro, K. S. Kumar and J. D. Whittenberger, J. Mater. Res. 6 (1991) 530.CrossRefGoogle Scholar
  7. 7.
    J. D. Whittenberger, K. S. Kumar, S. Brown, M. S. Dipietro and S. C. Farmer, in “Light Weight Alloys for Aerospace Applications II”, edited by E. W. Lee and N. J. Kim (TMS, Warrendale, PA, 1991) pp. 327–349.Google Scholar
  8. 8.
    K. S. Kumar, M. S. Dipietro and J. D. Whittenberger, Acta Metall Mater. 41 (1993) 1379.CrossRefGoogle Scholar
  9. 9.
    J. D. Whittenberger, R. K. Viswanandham, S. K. Mannan and B. Sprissler, J. Mater. Sci. 25 (1990) 35.CrossRefGoogle Scholar
  10. 10.
    K. S. Kumar and S. A. Brown, Scripta Metall 26 (1992) 197.CrossRefGoogle Scholar
  11. 11.
    K. S. Kumar, M. S. Dipietro, S. Brown and J. D. Whittenberger, NASA TM 105628 (1992).Google Scholar
  12. 12.
    J. D. Whittenberger, K. S. Kumar, M. S. Dipietro and S. Brown, Intermetallics. 3 (1995) 221.CrossRefGoogle Scholar
  13. 13.
    K. S. Kumar, M. S. Dipietro, S. Brown and J. D. Whittenberger, NASA TM 103724 (1991).Google Scholar
  14. 14.
    R. D. Noebe, R. R. Bowman and M. V. Nathal, Inter. Mater. Rev. 38 (1993) 193.CrossRefGoogle Scholar
  15. 15.
    J. D. Whittenberger, J. Mater. Sci. 23 (1988) 35.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. D. Whittenberger
    • 1
  • K. S. Kumar
    • 2
  • M. S. Dipietro
    • 2
  • S. A. Brown
    • 2
  1. 1.NASA Lewis Research CenterClevelandUSA
  2. 2.Martin Marietta LaboratoriesBaltimoreUSA

Personalised recommendations