Advertisement

Journal of Materials Science

, Volume 30, Issue 24, pp 6303–6308 | Cite as

X-ray fluorescence study of fine powders of wolframite ores with SiO2 and WO3 major phases

  • S. C. Srivastava
  • A. N. Das
  • L. P. Pandey
  • S. Ram
Article

Abstract

Single phase pure SiO2 exhibits a strong and symmetric X-ray fluorescence (XRF) peak at 1.741 keV, which does not depend much on the size of the particles. Moreover, the separated particles of 30–110 μm size strongly interact with 5–20 wt% WO3 additions of similar particle sizes, and show dramatic changes of peak intensity (lp), half-bandwidth 2Δθ1/2, (i.e. the full width at the half peak-intensity), and integrated intensity (l) of the signal as a function of size of the particles. The WO3 fluoresces at the relatively higher energy of 8.39 keV with adversely modified intensity lp or l in such a peculiar way that the total intensity lt in the two signals of the two WO3 and SiO2 phases is nearly constant. The results are tested and applied to XRF analyses of a wolframite ore having SiO2 and WO3 as the two major phases. In all these examples, the intensities of the SiO2 and WO3 signals vary, basically due to the expected macroscopic electromagnetic interactions between the two phases.

Keywords

Particle Size SiO2 Single Phase Material Processing Full Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. F. Berry, T. Furuta and J. R. Rodes, Adv. X-ray Anal. 12 (1969) 612.Google Scholar
  2. 2.
    F. Claisse and C. Samson, ibid. 5 (1961) 335.Google Scholar
  3. 3.
    F. Bernstein, ibid. 5 (1961) 486.Google Scholar
  4. 4.
    S. Ram, Phys. Rev. (B) 51 (1995) 6280.CrossRefGoogle Scholar
  5. 5.
    Idem, J. Mater. Sci. 25 (1990) 2465.CrossRefGoogle Scholar
  6. 6.
    S. Ram, K. Ram and B. S. Shukla, ibid. 27 (1992) 511.CrossRefGoogle Scholar
  7. 7.
    J. P. Rino, I. Ebbsjo, R. K. Kalia, A. Nakano and P. Vashishta, Phys. Rev. (B) 47 (1993) 3053.CrossRefGoogle Scholar
  8. 8.
    S. C. Srivastava, J. Mines, Metals Fuels 26 (1978) 413.Google Scholar
  9. 9.
    S. C. Srivastava, Rajeev and M. K. Ghosh, ibid. 28 (1980) 22.Google Scholar
  10. 10.
    K.W. Madlem, Adv. X-ray Anal. 9 (1965) 441.Google Scholar
  11. 11.
    L. Genzeli and T. P. Martin, Phys. Stat. Solidi (B) 51 (1972) 91.CrossRefGoogle Scholar
  12. 12.
    T. Won Noh, Y. Song, S. Lee, J. R. Grains, H. D. Park and E. R. Kreidler, Phys. Rev. (B) 33 (1986) 3793.CrossRefGoogle Scholar
  13. 13.
    M. F. McMillan and R. P. Devaty, ibid. 43 (1991) 13838.CrossRefGoogle Scholar
  14. 14.
    M. Fujii, M. Wada, S. Hayashi and K. Yamamoto, ibid. 46 (1992) 15930.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. C. Srivastava
    • 1
  • A. N. Das
    • 1
  • L. P. Pandey
    • 1
  • S. Ram
    • 2
  1. 1.Analytical Chemistry DivisionNational Metallurgical LaboratoryJamshedpurIndia
  2. 2.Institut für MetallforschungTechnische Universität BerlinBerlinGermany

Personalised recommendations