Journal of Materials Science

, Volume 30, Issue 24, pp 6288–6298 | Cite as

On the thin-section size dependent creep strength of a single crystal nickel-base superalloy

  • A. Baldan


The combined effects of thin-section size, D, and microcracks on the creep behaviour of the single crystal MAR-M002 were investigated at the creep conditions of 300 MPa and 900 °C. It was observed that the creep rupture life, tR is controlled by the mean microcrack size to thin-section size, (dc/D), (or the total number, (Nm), of the mean-sized microcrack particles across the diameter, assuming D/dc=Nm); reducing Nm continuously improves tR. The creep rupture strain (or ductility), εR, can be improved sharply by increasing the total number, NT, of microcrack particles across the cross-section, NTD2NA, where NA is the number of microcrack particles (cavity density) per cross-section. The behaviour of the creep rupture ductility was interpreted in terms of the weakest link, or “largest-flaw” concept; the observation of the higher proportion of the less likely dangerous (smaller in size) microcracks with increasing NT was the underlining reason for the improvement in ductility.


Polymer Ductility Combine Effect Material Processing Creep Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Jackson, M. J. Donachie, M. J. Henricks and M. Gell, Metall. Trans. 8A (1977) 1615.CrossRefGoogle Scholar
  2. 2.
    M. Gell, D. N. Hull and A. F. Giamei, in “Proceedings of the Fourth International Symposium on Superalloys (Superalloys 1980) ”, edited by J. K. Tien, S. T. Wlodek, H. Marrow, M. Gell and G. E. Maurer (American Society for Metals, Metals Park, OH, 1980) p. 205.CrossRefGoogle Scholar
  3. 3.
    G. R. Leverent and M. Gell, Trans. AIME 245 (1969) 1167.Google Scholar
  4. 4.
    T. B. Gibbons, Metals Technol. 8 (1981) 472.CrossRefGoogle Scholar
  5. 5.
    E. G. Richards, J. Inst. Metals 96 (1968) 365.Google Scholar
  6. 6.
    M. C. Pandey, D. M. R. Taplin and P. R. Rao, Mater. Sci. Engng A118 (1989) 33.CrossRefGoogle Scholar
  7. 7.
    B. F. Dyson and S. Osgerby, Mater. Sci. Technol. 3 (1987) 545.CrossRefGoogle Scholar
  8. 8.
    A. Baldan, Z. Metallkd. 85 (1994) 40.Google Scholar
  9. 9.
    Idem, Mater. Trans., JIM, submitted.Google Scholar
  10. 10.
    Idem, J. Mater. Sci. Lett. 13 (1994) 734.CrossRefGoogle Scholar
  11. 11.
    P. Vitaour, D. Coutsouradis and L. Habraken, in “Proceedings High Temperature Alloys for Gas Turbines and Other Applications”, Liege, 25–27 September, edited by D. Coutsouradis, P. Felix, H. Fischmeister, L. Habraken, Y. Lindblom and M. O. Speidel (Applied Science, London, 1978) pp. 875–891.Google Scholar
  12. 12.
    H. Burt, J. P. Dennison, I, C. Elliot and B. Wilshire, Mater. Sci. Engng 53 (1982) 245.CrossRefGoogle Scholar
  13. 13.
    A. Baldan, Internal Report (CSIR, Pretoria, South Africa, 1992).Google Scholar
  14. 14.
    Idem Z. Metallkd. 83 (1992) 324.Google Scholar
  15. 15.
    Idem, ibid. 83 (1992) 331.Google Scholar
  16. 16.
    Idem, ibid. 83 (1992) 750.Google Scholar
  17. 17.
    Idem, J. Mater. Sci. Lett. 11 (1992) 1315.CrossRefGoogle Scholar
  18. 18.
    Idem, ibid. 26 (1991) 3879.CrossRefGoogle Scholar
  19. 19.
    G. R. Leverent and M. Gell, Metall. Trans. 6A (1975) 367.CrossRefGoogle Scholar
  20. 20.
    M. Gell and G. R. Leverent, Acta Metall. 16 (1968) 553.CrossRefGoogle Scholar
  21. 21.
    J. S. Crompton and J. W. Martin, Metall. Trans. 15A (1984) 1771.Google Scholar
  22. 22.
    M. Doi, T. Miyazaki and T. Wakatsuki, Mater. Sci. Engng 74 (1985) 139.CrossRefGoogle Scholar
  23. 23.
    T. Khan, “Proceedings, High Temperature Alloys for Gas Turbines and Other Applications”, edited by W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T. B. Gibbons, I. Kvernes, Y. Lindblom, J. B. Marriot and D. B. Meadowcroft, Liege, Belgium, 6–9 October (1986) pp. 21–50.Google Scholar
  24. 24.
    W. D. Nix, Mater. Sci. Engng A103 (1988) 103.CrossRefGoogle Scholar
  25. 25.
    M. F. Ashby and B. F. Dyson, in “Advances in Fracture Research (Fracture 84) ”, Proceedings of the Sixth International Conference on Fracture (ICF6), New Delhi, India, Vol. 1, edited by S. R. Valluri, D. M. R. Taplin, P. Rama Rao, J. F. Knott and R. Dubey (Pergamon Press, Oxford, 1984) pp. 3–30.Google Scholar
  26. 26.
    M. R. Winston and J. E. Northwood, “Solidification technology in the foundary and cast house” (Metals Society, London, 1983) pp. 298–303.Google Scholar
  27. 27.
    C. Lipson and N. J. Sheth, “Statistical design and analysis of engineering experiments” (McGraw-Hill, New York, 1973) pp. 36–44.Google Scholar
  28. 28.
    K. P. George, “Advances in Fracture Research (Fracture 84) ”, Proceedings of the Sixth International Conference on Fracture (ICF6), New Delhi, India, Vol. 5, edited by S. R. Valluri, D. M. R. Taplin, P. Rama Rao, J. F. Knott and R. Dubey (Pergamon Press, Oxford, 1984) pp. 3549–3556.Google Scholar
  29. 29.
    W. Weibull, Mater. Res. Studies May (1962) 405.Google Scholar
  30. 30.
    A. S. Argon, Scripta Metall. 17 (1983) 5.CrossRefGoogle Scholar
  31. 31.
    P. F. Thomason, “Ductile fracture of metals” (Pergamon Press, Oxford, 1990) pp. 19–20, 115–130.Google Scholar
  32. 32.
    F. C. Monkman and N. J. Grant, Proc. ASTM 56 (1956) 593.Google Scholar
  33. 33.
    F. Dobes and K. Milicka, Met. Sci. 10 (1976) 382.CrossRefGoogle Scholar
  34. 34.
    A. K. Koul, R. Castillo and K. Willett, Mater. Sci. Engng 66 (1984) 213.CrossRefGoogle Scholar
  35. 35.
    R. W. Evans, J. D. Parker and B. Wilshire, “Recent advances in creep and fracture of engineering materials and structures”, edited by B. Wilshire and D. R. Owen (Pineridge Press, Swansea, 1982) p. 135.Google Scholar
  36. 36.
    A. Baldan, J. Mater. Sci. Lett., submitted.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. Baldan
    • 1
  1. 1.Department of Mechanical EngineeringEastern Mediterranean UniversityMersin 10Turkey

Personalised recommendations