Journal of Materials Science

, Volume 30, Issue 24, pp 6281–6287 | Cite as

Silica fracture

Part III Five- and six-fold ring contraction models
  • J. K. West
  • L. L. Hench


In part I of this series, a ring contraction model was proposed as the basic mechanism of slow crack growth in silica glass. AM1 molecular orbital theory running on a CAChe workstation was used to find the transition state for the contraction of a 4-fold ring into a 3-fold ring. Using the same AM1 method, the predicted transition state has been found for the contraction of a 5-fold ring into a 4-fold ring. The activation barrier to fracture for this contraction is Ef = +7.9 Kcal mol−1 using Unrestricted Hartree Fock (UHF) theory. As would be expected, the barrier calculated for Restricted Hartree Fock (RHF) was a little higher at Ef = +14.8 Kcal mol−1. This confirms our initial hypothesis that ring contraction can lead to much lower fracture energies than expected from simple Si-O bond breaking. Several different schemes of ring contractions are possible for both 5-fold and 6-fold ring structures. All contraction paths have different intermediate structures that lead to the same end point of slow crack growth. The various barriers to fracture range from +8 to +52 Kcal mol−1 for the 5-fold ring contractions and from +9 to +41 Kcal mol−1 for 6-fold ring contractions.


Fracture Energy Activation Barrier Silica Glass Bond Breaking Orbital Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. K. West and L. L. Hench, J. Mater. Sci, 29 (1994) 3601.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 29 (1994) 5808.CrossRefGoogle Scholar
  3. 3.
    M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. P. Stewart, J. Amer. Chem. Soc. 107 (1985) 3902.CrossRefGoogle Scholar
  4. 4.
    M. J. S. Dewar and C. Jie, ibid. 6 (1987) 1486.Google Scholar
  5. 5.
    Mopac Version 6.1, Tektronix Inc., CaChe Scientific, Beaverton, OR.Google Scholar
  6. 6.
    J. K. West and S. Wallace, in “Chemical Processing of Advanced Materials”, edited by L. L. Hench and J. K. West (John Wiley and Sons, New York, 1992) p. 159.Google Scholar
  7. 7.
    S. Wallace, J. K. West and L. L. Hench, J. Non-Cryst. Solids 152 (1993) 101.CrossRefGoogle Scholar
  8. 8.
    J. K. West and S. Wallace, ibid. 152 (1993) 109.CrossRefGoogle Scholar
  9. 9.
    S. W. Freiman, in “Glass Science and Technology, Vol. 5 Elasticity and Strength in Glass”, edited by D. R. Uhlmann and N. J. Kreidl (Academic Press, New York, 1980) pp. 21–79.CrossRefGoogle Scholar
  10. 10.
    T. A. Michalske and B. C. Bunker, J. Appl. Phys. 56 (1984) 2686.CrossRefGoogle Scholar
  11. 11.
    S. M. Wiederhorn, J. Amer. Ceram. Soc. 50 (1967) 407.CrossRefGoogle Scholar
  12. 12.
    F. L. Galeener, J. Non-Cryst. Solids 49 (1982) 53.CrossRefGoogle Scholar
  13. 13.
    J. K. West and L. L. Hench, J. Amer. Ceram. Soc. 78 (4) (1995) 1093.CrossRefGoogle Scholar
  14. 14.
    Idem, J. Non-Cryst. Solids 180 (1994) 11.CrossRefGoogle Scholar
  15. 15.
    L. P. Davis and L. W. Burggraf, in “Ultrastructure Processing of Advanced Ceramics”, edited by J. D. Mackenzie and D. R. Ulrich (Wiley, New York, 1988) p. 367.Google Scholar
  16. 16.
    L. W. Burggraf, L. P. Davis and M. S. Gordon, in “Ultrastructure Processing of Advanced Materials”, edited by D. R. Uhlmann and D. R. Ulrich (Wiley, New York, 1992) p. 47.Google Scholar
  17. 17.
    J. J. P. Stewart, J. Computational Chem. 50 (1989) 221.CrossRefGoogle Scholar
  18. 18.
    C. J. Brinker and G. W. Scherer, “Sol-Gel Science” (Academic Press, New York, 1990).Google Scholar
  19. 19.
    N. L. Allinger, J. Amer. Chem. Soc. 99 (1977) 8127.CrossRefGoogle Scholar
  20. 20.
    U. Burkert and N. L. Allinger, “Molecular Mechanics” (American Chemical Society, Washington, DC, 1982).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. K. West
    • 1
  • L. L. Hench
    • 1
  1. 1.Advanced Materials Research CenterUniversity of FloridaAlachuaUSA

Personalised recommendations