Journal of Materials Science

, Volume 30, Issue 24, pp 6267–6272 | Cite as

Experimental investigation of the transformation zone of tetragonal zirconia polycrystalline ceramics

  • Qing Xinlin
  • Qin Yuwen
  • Dai Fulong
  • Sun Qingping


Stress-induced martensitic transformation plastic zones of ceria-stabilized tetragonal zirconia polycrystalline ceramics, under some typical loading conditions, were studied by Moiré interferometry. The full-field fringe patterns, including u-fields and v-fields, were acquired. According to these patterns, the transformation zone shape and transformation plasticity distributions of the specimens were obtained. The experimental results show that the stress-induced transformation at room temperature is concentrated in some narrow bands and the transformation plasticity is not uniform within the transformation zone. Experiments also reveal that the transformation zone with a characteristic elongated shape ahead of the notch, in a single-edge notch bending specimen, is obviously different from that resulting from some constitutive relation of transformation. This work provides a significant experimental foundation for establishing the theoretical models of transformation toughening.


Polymer Zirconia Theoretical Model Experimental Investigation Loading Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Garvie, R. H. J. Hannink and R. T. Pascoe, Nature 258 (1975) 703.CrossRefGoogle Scholar
  2. 2.
    F. F. Lange, J. Mater. Sci. 17 (1982) 247.CrossRefGoogle Scholar
  3. 3.
    A. G. Evans and R. M. Connon, Ada Metall. 34 (1986) 751.Google Scholar
  4. 4.
    P. E. Reyes-Morel and I. W. Chen, J. Am. Ceram. Sci. 72 (1988) 343.CrossRefGoogle Scholar
  5. 5.
    M. V. Swain, R. H. J. Hannink and R. C. Garvie, in “Fracture Mechanics of Ceramics”, Vol. 6, edited by R. C. Bradt, A. G. Evans (Plenum Press, New York, 1983) pp. 339–54.Google Scholar
  6. 6.
    D. R. Clark and F. Adar, J. Am. Ceram. Sci. 65 (1982) 284.CrossRefGoogle Scholar
  7. 7.
    R. H. Dauskardt, D. K. Veir and R. D. Ritchie, ibid. 72 (1989) 1124.CrossRefGoogle Scholar
  8. 8.
    B. N. Cox, D. B. Marshall, D. K. Kouris and T. Mura, J. Eng. Mater. Technol. 110 (1988) 105.CrossRefGoogle Scholar
  9. 9.
    L. R. F. Rose and M. V. Swain, Acta Metall. 36 (1988) 955.CrossRefGoogle Scholar
  10. 10.
    C. S. Yu and D. K. Shetty, J. Am. Ceram. Sci. 72 (1989) 921.CrossRefGoogle Scholar
  11. 11.
    R. C. Garvie, R. H. J. Hannink and M. V. Swain, J. Mater. Sci. Lett. 1 (1982) 437.CrossRefGoogle Scholar
  12. 12.
    A. H. Heuer, J. Am. Ceram. Sci. 70 (1987) 689.CrossRefGoogle Scholar
  13. 13.
    D. Post, in “Handbook on Experimental Mechanics”, edited by A. S. Kobayashi, (Prentice-Hall, Englewood Cliffs, New York, 1987) Ch. 7.Google Scholar
  14. 14.
    X. L. Qing, F. L. Dai and Y. W. Qin, Opt. Las. Eng., in press.Google Scholar
  15. 15.
    F. L. Dai, J. Mckelvie and D. Post, ibid. 12 (1990) 101.CrossRefGoogle Scholar
  16. 16.
    D. S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Qing Xinlin
    • 1
  • Qin Yuwen
    • 1
  • Dai Fulong
    • 2
  • Sun Qingping
    • 2
  1. 1.Department of MechanicsTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Department of Engineering MechanicsTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations