Advertisement

Journal of Materials Science

, Volume 30, Issue 24, pp 6205–6208 | Cite as

Electrical resistivity of single-crystal lithium ammonium sulphate between 300 and 500 K

  • M. A. Gaffar
  • A. Abu El-Fadl
Article
  • 38 Downloads

Abstract

The d.c.,electrical resistivity, θ, of pure LiNH4SO4 single crystals has been measured between 300 and 500 K in three successive runs. Anomalous behaviour before and at the transition point was observed and thermal annealing was necessary for reproducible results. The temperature dependence of θ along the polar axis yielded the values ΔE=0.54 and 1.48 eV and ΔE=1.95 eV for the energy activating the charge transport mechanisms in the ferroelectric and the paraelectric phases, respectively. A “pre-transition” phenomenon was observed while measuring ϱ along the a- and b-axes. The J-E characteristics indicated possible space-charge effects at low measuring fields. The mechanism of electrical conduction in the measuring range has been discussed.

Keywords

Lithium Electrical Resistivity Measuring Field Transition Point Transport Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. A. Dollase, Acta Crystallogr. B 25 (1969) 2298.CrossRefGoogle Scholar
  2. 2.
    T. Mitsui, T. Oka, Y. Shiroishi, M. Takashige, K. Ito and S. Sawada, J. Phys. Soc. Jpn 39 (1975) 845.CrossRefGoogle Scholar
  3. 3.
    V. I. Yuzvak, L. I. Zherebtsova, V. B. Shkuryaeva and I. P. Aleksandrova, Sov. Phys. Crystallogr. 19 (1975) 480.Google Scholar
  4. 4.
    H. Shimizu, A. Oguri, N. Yasuda and S. Fujimoto, J. Phys. Soc. Jpn 45 (1978) 565.CrossRefGoogle Scholar
  5. 5.
    K. S. Aleksandrov, I. P. Aleksandrova, A. T. Anistratov and V. E. Shabanov, Izv. Akad. Nauk SSSR Ser Fiz. 41 (1977) 599.Google Scholar
  6. 6.
    I. P. Aleksandrova, I. S. Kabanov, S. V. Melnikova, T. I. Chekmasova and V. I. Yuzvak, Sov. Phys. Solid State 19 (1977) 605.Google Scholar
  7. 7.
    P. E. Tomaszewski and A. Pietraszko, Phys. Status Solidi 56 (1979) 467.CrossRefGoogle Scholar
  8. 8.
    I. M. Iskornev and I. N. Flerov, Sov. Phys. Solid State 19 (1977) 605.Google Scholar
  9. 9.
    R. K. Shenoy and J. Ramakrishna, J. Phys. C Solid State Phys. 13 (1980) 5429.CrossRefGoogle Scholar
  10. 10.
    K. S. Aleksandrov, I. P. Aleksandrova, L. I. Zherebtsova, A. I. Kruglik, A. I. Krupnyi, S. V. Melnikova, V. I. Shneider and L. A. Shuvalov, Izv. Acad. Nauk SSSR, Ser Fiz. 39 (1975) 943.Google Scholar
  11. 11.
    S. Hirotsu, Y. Kunii, I. Yamamoto, M. Miyamoto and T. Mitsui, J. Phys. Soc. Jpn 50 (1981) 3392.CrossRefGoogle Scholar
  12. 12.
    T. I. Chekmasova, I. S. Kabanov and V. I. Yuzvak, Phys. Status Solidi(a) 44 (1977) K155.CrossRefGoogle Scholar
  13. 13.
    T. Nakamura, S. Kojima, M. Takashige, T. Mitsui, K. Asaumi, S. Itoh and S. Minomura, Jpn J. Appl. Phys. 18 (1979) 711.CrossRefGoogle Scholar
  14. 14.
    U. Syamaprasad and C. P. G. Vallabhan, Solid State Commun. 34 (1980) 899.CrossRefGoogle Scholar
  15. 15.
    R. Wyslouzil, W. T. Schranz, A. H. Fuith and H. Warhanek, Z. Phys. B 64 (1986) 473.CrossRefGoogle Scholar
  16. 16.
    I. P. Aleksandrova, I. S. Kabanov, S. V. Melinikova, T. I. Chekmasova and V. I. Yuzuvak, Sov. Phys. Crystallogr. 22 (1977) 182.Google Scholar
  17. 17.
    I. P. Aleksandrova and T. I. Chekmasova, Ferroelectrics 20 (1978) 283.CrossRefGoogle Scholar
  18. 18.
    Y. A. Badr and R. Kamel, J. Phys. Chem. Solids 41 (1980) 1127.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. A. Gaffar
    • 1
  • A. Abu El-Fadl
    • 1
  1. 1.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations