Advertisement

Journal of Materials Science

, Volume 30, Issue 24, pp 6192–6204 | Cite as

Sol-gel processing of lithium disilicate

Part II Crystallization and microstructure development of coatings
  • P. Li
  • L. F. Francis
Article

Abstract

Lithium disilicate (Li2Si2O5) coatings were prepared by spin-coating alkoxide solutions on to substrates [Si, SiO2, polycrystalline (poly) Si, sapphire] and heating isothermally at 500–600 °C. The effects of solution chemistry, coating thickness and substrate type on crystallization behaviour and microstructure development were investigated using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Amorphous dried coatings began to crystallize into Li2Si2O5 at 500–550 °C. Coatings prepared on Si substrates (with a thin native oxide) using Li-Si methoxyethoxide solution crystallized into microstructures with large grain sizes (ca. 2–5 μm diameter) as compared with the coating thickness (<0.3 μm). Nucleation rate in these coatings could be increased (and hence transformation rate increased and grain size decreased) by: (1) adding H2PtCl6to the solution to act as nucleation agent; (2) increasing the thickness of the coating; or (3) using a crystalline substrate (sapphire or poly Si). Coatings prepared using Li-Si ethoxide solution had fine-grained microstructures (⩽0.5 μm diameter) for all substrates. Chemical heterogeneity in the ethoxide system may have increased nucleation rate. Nucleation rate in this system could be decreased by using partially hydrolysed tetraethylorthosilicate as the Si precursor. The relationship between solution chemistry and microstructure was used to tailor microstructures in multilayer coatings.

Keywords

Atomic Force Microscopy Sapphire Coating Thickness Alkoxide Nucleation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. H. Frey and D. A. Payne, Appl. Phys. Letters 63 (1993) 2753.CrossRefGoogle Scholar
  2. 2.
    L. F. Francis and D. A. Payne, J. Amer. Ceram. Soc. 74 (1991) 3000.CrossRefGoogle Scholar
  3. 3.
    A. R. Di Giampalolo Conde, M. Puerta, H. Ruiz and J. Lira Olivares, J. Non-Cryst. Solids 147 & 148 (1992) 467.CrossRefGoogle Scholar
  4. 4.
    L. F. Francis, in “Intermetallic and Ceramic Coatings”, edited by T. S. Sudarshan and N. D. Dahotre (Marcel Dekker, New York, in press).Google Scholar
  5. 5.
    C. J. Brinker and G. W. Scherer, “Sol-gel science: the physics and chemistry of sol-gel processing” (Academic Press, New York, 1990).Google Scholar
  6. 6.
    R. A. Cairncross, L. F. Francis and L. E. Scriven, Drying Technol. J. 10 (1992) 893.CrossRefGoogle Scholar
  7. 7.
    V. Joshi and M. L. Mecartney, J. Mater. Res. 8 (1992) 2668.CrossRefGoogle Scholar
  8. 8.
    J. L. Keddie, P. V. Braun and E. P. Giannelis, J. Amer. Ceram. Soc. 77 (1994) 1592.CrossRefGoogle Scholar
  9. 9.
    R. W. Schwartz, J. A. Voigt, C. D. Buchheit and T. J. Boyle, in “Ferroic materials: design, preparation and characteristics”, edited by A. S. Bhalla, K. M. Nair, I. K. Lloyd, H. Yanagida and D. A. Payne (American Ceramic Society, Westerville, OH, 1994) p. 145.Google Scholar
  10. 10.
    K. Matusita and M. Tashiro, J. Non-Cryst. Solids 11 (1973) 471.CrossRefGoogle Scholar
  11. 11.
    M. C. Weinberg and E. D. Zanotto, ibid. 108 (1989) 99.CrossRefGoogle Scholar
  12. 12.
    A. R. Hyde, G. Partridge and S. Vignesoult, Brit. Ceram. Trans. 92 (1993) 55.Google Scholar
  13. 13.
    R. Dupree, D. Holland and M. G. Mortuza, J. Non-Cryst. Solids 116 (1990) 148.CrossRefGoogle Scholar
  14. 14.
    G. J. Gardopee, R. E. Nemnham and A. S. Bhalla, Ferroelectrics 33 (1981) 155.CrossRefGoogle Scholar
  15. 15.
    J-M. Wu, W. R. Cannon and C. Panzera, US Patent 4515634.Google Scholar
  16. 16.
    S. P. Szu, L. C. Klein and M. Greenblatt, J. Non-Cryst. Solids 121 (1990) 90.CrossRefGoogle Scholar
  17. 17.
    P. Li, B. Ferguson and L. F. Francis, J. Mater. Sci. submitted.Google Scholar
  18. 18.
    E. Preston and W. E. S. Turner, J. Soc. Glass Technol. 18 (1934) 143.Google Scholar
  19. 19.
    D. E. Veinot, K. B. Langille, D. T. Nguyen and J. O. Bernt, J. Non-Cryst. Solids 127 (1991) 221.CrossRefGoogle Scholar
  20. 20.
    T. Wang, C. Lee and L. D. Schmidt, Surf. Sci. 163 (1985) 181.CrossRefGoogle Scholar
  21. 21.
    I. M. Reaney and D. J. Barber, J. Amer. Ceram. Soc. 74 (1991) 1635.CrossRefGoogle Scholar
  22. 22.
    P. F. James, Phys. Chem. Glasses 15 (1974) 95.Google Scholar
  23. 23.
    V. Komppa, ibid. 20 (1979) 130.Google Scholar
  24. 24.
    M. H. Lewis and G. Smith, J. Mater. Sci. 11 (1976) 2015.CrossRefGoogle Scholar
  25. 25.
    H. D. Keith and F. J. Padden, J. Appl. Phys. 44 (1963) 2409.CrossRefGoogle Scholar
  26. 26.
    E. M. Logothetis and W. J. Kaiser, Sensors and Actuator 4 (1983) 333.CrossRefGoogle Scholar
  27. 27.
    M. C. Weinberg, J. Non-Cryst. Solids 72 (1985) 301.CrossRefGoogle Scholar
  28. 28.
    E. G. Rowland and P. F. James, Phys. Chem. Glasses 20 (1979) 9.Google Scholar
  29. 29.
    C. V. Thompson, Ann. Rev. Mater. Sci. 20 (1990) 245.CrossRefGoogle Scholar
  30. 30.
    L. L. Hench, S. W. Frieman and D. L. Kinser, Phys. Chem. Glasses 21 (1971) 58.Google Scholar
  31. 31.
    G. E. Rindone, J. Amer. Ceram. Soc. 45 (1962) 7.CrossRefGoogle Scholar
  32. 32.
    T. Spalvins and W. A. Brainard, NASA Technical Memorandum 28 (1974) 521.Google Scholar
  33. 33.
    D. W. Susnitzky and C. B. Carter, J. Amer. Ceram. Soc. 75 (1992) 2463.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. Li
    • 1
  • L. F. Francis
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations