Advertisement

Journal of Materials Science

, Volume 30, Issue 24, pp 6179–6191 | Cite as

Interlaminar fracture toughness and associated fracture behaviour of bead-filled epoxy/glass fibre hybrid composites

  • Jung Ju Lee
  • Chang Min Suh
Article

Abstract

To investigate enhancement of matrix-dominated properties (such as interlaminar fracture toughness) of a composite laminate, two different bead-filled epoxies were used as matrices for the bead-filled epoxy/glass fibre hybrid composites. The plane strain fracture toughness of two different bead-filled epoxies have been measured using compact tension specimens. Significant increases in toughness were observed. Based on these results the interlaminar fracture toughness and fracture behaviour of hybrid composites, fabricated using bead-filled epoxy matrices, have been investigated using double cantilever beam and end notch flexure specimens for Mode I and Mode II tests, respectively. The hybrid composites based on carbon bead-filled matrix shows an increase in both GIC initiation and GIIC values as compared to a glass fibre reinforced plastic laminate with unmodified epoxy matrix. The optimum bead volume fraction for the hybrid composite is between 15% and 20%. However, the unmodified epoxy glass-fibre composite shows a higher GIC propagation value than that of hybrid composites, due to fibre bridging, which is less pronounced in the hybrids as the presence of the beads results in a matrix-rich interply region.

Keywords

Fracture Toughness Hybrid Composite Epoxy Matrix Compact Tension Double Cantilever Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Y. Kam and J. V. Walker, in “Toughened composite”, edited by N. J. Johnston, ASTM STP 937 (American Society for Testing and Material, Philadelphia, PA, 1987) p. 9.CrossRefGoogle Scholar
  2. 2.
    P. K. Mallic and S. Newman, “Composite Materials Technology” (Hanser, Munich,Vienna, New York, 1990) Ch. 1, p. 10.Google Scholar
  3. 3.
    R. C. Tennyson, in “Proceedings of the International Conference on Composite Engineering (ICCE/I)”, edited by David Hui (ICCE, New Orleans, 1994) p. 11Google Scholar
  4. 4.
    W. M. Jordan and W. L. Bradley, in “Toughened composite”, edited by N. J. Johnston, ASTM STP 937 (American Society for Testing and Material, Philadelphia, PA, 1987) p. 95CrossRefGoogle Scholar
  5. 5.
    B. Z. Jang, J. Y. Liau, L. R. Hwang and W. K. Shih, J. Reinf. Plast, Compos. 8 (1989) 312.CrossRefGoogle Scholar
  6. 6.
    J. Kim, C. Baillie, J. Poh and Y. W. Mai, Compos. Sci. Technol. 43 (1992) 283.CrossRefGoogle Scholar
  7. 7.
    D. Hull, J. Mater. Sci. Eng. A184 (1994) 173.CrossRefGoogle Scholar
  8. 8.
    F. N. Cogswell and M. Hopper, Composites 3 (1983) 251.CrossRefGoogle Scholar
  9. 9.
    F. N. Cogswell and D. C. Leach, Plast. Rubber Proc. Applic. 4 (1984) 271.Google Scholar
  10. 10.
    A. C. Garg and Y. W. Mai, Compos. Sci. Technol. 37 (1988) 179.CrossRefGoogle Scholar
  11. 11.
    F. N. Cogswell, “Thermoplastic aromatic polymer composites” (Butterworth-Heinemann, Oxford, 1992) Ch. 3, p. 51.CrossRefGoogle Scholar
  12. 12.
    W. D. Bascom, R. Y. Ting, R. J. Moulton and A. R. Siebert, J. Mater. Sci. 16 (1981) 2657.CrossRefGoogle Scholar
  13. 13.
    W. L. Bradley, Key Eng. Mater. 37 (1989) 101.Google Scholar
  14. 14.
    R. E. Evans and J. E. Master, in “Toughened composite”, edited by N. J. Johnston, ASTM STP 937 (American Society for Testing and Material, Philadelphia, PA, 1987) p. 413.CrossRefGoogle Scholar
  15. 15.
    F. F. Lange, Philos. Mag. 22 (1970) 983.CrossRefGoogle Scholar
  16. 16.
    J. S. Spanoudakis and R. J. Young, J. Mater. Sci. 19 (1984) 473.CrossRefGoogle Scholar
  17. 17.
    A. C. Moloney, H. H. Kausch and H. R. Stieger, ibid. 18 (1983) 208.CrossRefGoogle Scholar
  18. 18.
    A. C. Moloney, H. H. Karsch, T. Kaiser and H. R. Beer, ibid. 22 (1987) 381.CrossRefGoogle Scholar
  19. 19.
    B. Z. Jang, J. Y. Liau, L. R. Hwang and W. K. Shih, J. Reinf. Plast. Compos. 9 (1990) 314.CrossRefGoogle Scholar
  20. 20.
    J. K. Kim and P. E. Robertson, J. Mater. Sci. 21 (1992) 161.CrossRefGoogle Scholar
  21. 21.
    C. Doran, S. L. Ogin and P. A. Smith, in “Advanced Composites in Emerging Technologies”, edited by S. A. Paipetis and T. P. Philippidis (AMATEC, Patras, Greece, 1991) p. 181.Google Scholar
  22. 22.
    Manufacturer's technical data, “Spherical carbon powder” (1989).Google Scholar
  23. 23.
    J. J. Lee, S. L. Ogin and P. A. Smith, “Proceedings of the 5th PRI International Conference on Fibre Reinforced Composites”, FRC '92, University of Newcastle upon Tyne, 24–26 March 1992 p. 22/1.Google Scholar
  24. 24.
    J. J. Lee, Ph D thesis, University of Surrey (1992).Google Scholar
  25. 25.
    “Protocols for Interlaminar Fracture Testing of Composites”, edited by P. Davies, European Structural Integrity Society Polymers and Composite Task Group, March (1992 revision).Google Scholar
  26. 26.
    R. M. L. Foote and V. T. Buchwald, Int. J. Fract. 29 (1985) 125.Google Scholar
  27. 27.
    J. K. Kim, C. A. Baillie, J. Poh and Y. M. Mai, Compos. Sci. Technol. 43 (1992) 283.CrossRefGoogle Scholar
  28. 28.
    G. M. Newas, Eng. Frac. Mech. 29 (1988) 31.CrossRefGoogle Scholar
  29. 29.
    A. J. Russel and K. N. Street, in “Delamination and debonding of materials”, edited by W. S. Johnston, ASTM STP 876 (American Society for Testing and Material, Philadelphia, PA, 1985) p. 349.CrossRefGoogle Scholar
  30. 30.
    S. Hashemi, A. J. Kinloch and J. G. Williams, Compos. Sci. Technol. 37 (1990) 429.CrossRefGoogle Scholar
  31. 31.
    M. F. Hipps, M. K. Tse and W. L. Bradley, in “Toughened composite”, edited by N. J. Johnston, ASTM STP 937 (American Society for Testing and Materials, Philadelphia, PA, 1989) p. 115.Google Scholar
  32. 32.
    W. L. Bradley, in “Application of fracture mechanics to composite materials”, Composite material series, edited by K. Friedrich, (Elsevier Science, 1989) p. 159.Google Scholar
  33. 33.
    A. J. Kinloch, S. J. Shaw and D. A. Tod, Polymer 24 (1983) 1341.CrossRefGoogle Scholar
  34. 34.
    D. L. Hunston and R. Dehl, “The role of polymer toughness in matrix dominated composite fracture”, Paper EM87-355 (Society of Manufacturing Engineers, Dearbon, MI, 1987).Google Scholar
  35. 35.
    H. J. Sue, R. E. Jones and E. I. Garcia-Meitin, J. Mater. Sci. 28 (1993) 6381.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Jung Ju Lee
    • 1
  • Chang Min Suh
    • 2
  1. 1.Department of Mechanical EngineeringKAISTYusung-gu, TaejonKorea
  2. 2.Department of Mechanical EngineeringKyung-pook National UniversityTaeguKorea

Personalised recommendations