Advertisement

Journal of Materials Science

, Volume 30, Issue 24, pp 6171–6178 | Cite as

Kinetic behaviour and reactivity of zinc ferrites for hot gas desulphurization

  • M. Pineda
  • J. L. G. Fierro
  • J. M. Palacios
  • C. Cilleruelo
  • J. V. Ibarra
Article

Abstract

Different zinc ferrite samples have been prepared with varying Fe:Zn atomic ratios and preparation procedures in order to optimize their behaviour as hot gas desulphurization agents. Kinetic studies on metal oxide sulphidation were performed in a thermobalance and sulphur removal tests were conducted in a fixed-bed reactor. Fresh and exhausted samples were characterized by several physical techniques. The results show that reaction rate is mainly controlled by mass transfer processes of the reactant through the gas film in contact with the solid and through the sulphide layer. Bulk ferrites displayed the best performance for sulphur removal. Ferrites deposited on an alumina substrate by impregnation are highly dispersed, however they exhibited a very poor efficiency for sulphur removal. Solid-state reactions of single oxides at the alumina interface, i.e. zinc and/or iron aluminate formation, instead of pore occlusion by the active ingredient seem to be responsible for a low reactivity.

Keywords

Ferrite Alumina Substrate Mass Transfer Process Zinc Ferrite Ferrite Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. V. Thambimuthu, “Gas cleaning for advanced coal-based power generation”, IEACR/53 (IEA Coal Research, London, March 1993) p. 97.Google Scholar
  2. 2.
    D. H. Scott, “Advanced power generation for fuel cells: implications for coal”, IEACR/59 (IEA Coal Research, London, July 1993) p. 5.Google Scholar
  3. 3.
    E. Sasaoka, T. Ichio and S. Kasaoka, Energy and Fuels 6 (1992) 603.CrossRefGoogle Scholar
  4. 4.
    S. S. Tamhankar, M. Hasatani and C. Y. Wen, Engng. Sci. 36 (1981) 1181.CrossRefGoogle Scholar
  5. 5.
    E. A. Efthimiadis and S. V. Sotirchos, Chem. Engng. Sci. 48 (1993) 1971.CrossRefGoogle Scholar
  6. 6.
    G. D. Focht, P. V. Ranade and D. P. Harrison, ibid. 43 (1988) 3005.CrossRefGoogle Scholar
  7. 7.
    S. K. Gangwal, J. M. Stogner and S. M. Harkins, Envirn. Progr. 8 (1989) 26.CrossRefGoogle Scholar
  8. 8.
    S. Lew, K. Jothimurugesan and M. Flytzani-Stephanopoulos, Ind. Engng. Chem. Res. 28 (1989) 535.CrossRefGoogle Scholar
  9. 9.
    S. K. Gangwal, S. M. Harkins, M. C. Woods, S. C. Jain and S. J. Bossart, Envirn. Progr. 8 (1989) 265.CrossRefGoogle Scholar
  10. 10.
    M. C. Woods, S. K. Gangwal, D. P. Harrison and K. Jothimurugesan, Ind. Engng. Chem. Res. 30 (1991) 100.CrossRefGoogle Scholar
  11. 11.
    L. N. Sa, G. D. Focht, P. V. Ranade and D. P. Harrison, Chem. Engng. Sci. 44 (1989) 215.CrossRefGoogle Scholar
  12. 12.
    R. Gupta, S. K. Gangwal and S. C. Jain, Energy and Fuels 6 (1992) 21.CrossRefGoogle Scholar
  13. 13.
    R. E. Ayala and B. M. Kim, Envirn. Progr. 8 (1989) 19.CrossRefGoogle Scholar
  14. 14.
    S. Lew, A. F. Sarofin and M. Flytzani-Stephanopoulos, Chem. Engng. Sci. 47 (1992) 1421.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Pineda
    • 1
  • J. L. G. Fierro
    • 1
  • J. M. Palacios
    • 1
  • C. Cilleruelo
    • 2
  • J. V. Ibarra
    • 2
  1. 1.Instituto de Catálisis y PetroleoquimicaCampus Universidad AutónomaMadridSpain
  2. 2.Instituto de CarboquimicaZaragozaSpain

Personalised recommendations