Advertisement

Journal of Materials Science

, Volume 30, Issue 24, pp 6161–6170 | Cite as

Hot sodium sulphate corrosion of a Nicalon silicon carbide fibre-reinforced lithium aluminosilicate glass-ceramic matrix composite

  • A. G. Fox
  • R. K. Hunt
  • L. C. Maldia
  • S. W. Wang
Article

Abstract

The corrosion products arising from the exposure of a Nicalon silicon carbide fibre-reinforced lithium aluminosilicate glass-ceramic matrix composite to molten sodium sulphate at 900 °C for 100 h in both oxygen and argon atmospheres were studied by X-ray diffraction (XRD) and scanning and transmission electron microscopy (SEM and TEM respectively). The microstructure of the as-received composite plates was found to be similar to that reported by other workers. The matrix consisted of grains of close to stoichiometric mullite and β-spodumene and a high silica glass with 20–50 nm wide fibre-matrix interfaces comprising a layer of turbostratic carbon and amorphous silica. The effects of hot sodium sulphate corrosion were found to be very similar in both argon and oxygen but proceeded at a much greater rate in the latter case where it had progressed 100 μm into the composite and consumed many fibres. XRD studies indicated that mullite had virtually disappeared in the corroded region and this was confirmed by SEM. TEM studies of thin sections cut from near the end of the corroded zone also showed that the matrix had become a very fine mixture of glass and β-spodumene grains and that the fibre-matrix interface region had grown to ca. 600–800 nm wide. The microstructure of this corroded interface comprised several alternating layers of turbostratic carbon, mixed carbon and amorphous silica and pure carbon, each with widths varying between ca. 100 and 200 nm. This layered structure apparently developed as a result of oxidation of the silicon carbide fibre in the presence of a gradient of oxygen partial pressure that decreased from the matrix across the interface to the fibre.

Keywords

Sodium Sulphate Corrosion Product Oxygen Partial Pressure Amorphous Silica Composite Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Aveston, G. A. Cooper and A. Kelly, in Proceedings of the Conference on Fiber Composites, NPL, Guildford UK, 1971 (IPC Science and Technology Press, London) p. 15.Google Scholar
  2. 2.
    A. G. Evans and D. M. Marshall, Acta Metall. 37 (1989) 2567.CrossRefGoogle Scholar
  3. 3.
    J. J. Brennan and K. M. Prewo, J. Mater. Sci. 17 (1982) 2371.CrossRefGoogle Scholar
  4. 4.
    K. M. Prewo, J. Mater. Sci. 21 (1986) 3590.CrossRefGoogle Scholar
  5. 5.
    K. M. Prewo, Mater. Res. Soc. Proc. 120 (1988) 145.CrossRefGoogle Scholar
  6. 6.
    R. Chaim, D. G. Brandon and L. Baum, Ceram. Engng. Sci. Proc. 9 (1988) 695.CrossRefGoogle Scholar
  7. 7.
    M. Y. Chen, J. M. Battison and Tai-Il Mah, J. Mater. Sci. 24 (1989) 3213.CrossRefGoogle Scholar
  8. 8.
    B. J. Norman and B. P. Tilley, Proc. Brit. Ceram. Soc. 46 (1990) 127.Google Scholar
  9. 9.
    M. H. Lewis and V. S. R. Murthy, Comp. Sci. Tech. 42 (1991) 221.CrossRefGoogle Scholar
  10. 10.
    S. M. Bleay, V. D. Scott, B. Harris, R. G. Cooke and F. A. Habib, J. Mater. Sci. 27 (1992) 2811.CrossRefGoogle Scholar
  11. 11.
    B. L. Metcalfe, I. W. Donald and D. J. Bradley, ibid. 27 (1992) 3075.CrossRefGoogle Scholar
  12. 12.
    A. Kumar and K. M. Knowles, Acta Metall. Mater. in press.Google Scholar
  13. 13.
    R. F. Cooper and K. Chyung, J. Mater. Sci. 22 (1987) 3148.CrossRefGoogle Scholar
  14. 14.
    R. Chaim and A. H. Heuer, Adv. Ceram. Mater. 2 (1987) 154.CrossRefGoogle Scholar
  15. 15.
    L. A. Bonney and R. F. Cooper, J. Amer. Ceram. Soc. 73 (1990) 2916.CrossRefGoogle Scholar
  16. 16.
    K. M. Knowles, A. Kumar and D.W. Shin, in “Electron microscopy and analysis '91”, Bristol UK, September 1991, edited by F. J. Humphreys (Institute of Physics, London). Inst. Phys. Conf. Ser. No. 119: Section 7, 261.Google Scholar
  17. 17.
    C. Ponthieu, M. Lancin, J. T. Desseau and S. Vignescoult, J. de Physique 51 (1990) C1.Google Scholar
  18. 18.
    E. Bischoff, M. Ruhle, O. Sbaizero and A. G. Evans, J. Amer. Ceram. Soc. 72 (1989).Google Scholar
  19. 19.
    N. S. Jacobsen, J. Amer. Ceram. Soc. 76 (1993) 3.CrossRefGoogle Scholar
  20. 20.
    S. W. Wang, R. W. Kowalik and R. R. Sands, Ceram. Engng. Sci. Proc. 14 385.Google Scholar
  21. 21.
    R. E. Franklin, Acta Crystallogr. 4 (1951) 253.CrossRefGoogle Scholar
  22. 22.
    A. Kumar and K. M. Knowles, J. Amer. Ceram. Soc. accepted.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. G. Fox
    • 1
  • R. K. Hunt
    • 1
  • L. C. Maldia
    • 1
  • S. W. Wang
    • 2
  1. 1.Materials Science Section, Department of Mechanical EngineeringUnited States Naval Postgraduate SchoolMontereyUSA
  2. 2.Code 6063, Aircraft DivisionNaval Air Warfare CenterWarminsterUSA

Personalised recommendations