Journal of Materials Science

, Volume 30, Issue 24, pp 6156–6160 | Cite as

Influnce of pH on the sorption of cadmium ions on calcium hydroxyapatite

  • J. Jeanjean
  • M. Fedoroff
  • F. Faverjon
  • U. Vincent
  • J. Corset


Sorption of cadmium ions from aqueous solutions on calcium hydroxyapatite was studied as a function of pH. The concentration of cadmium, [Cd]s, in the solid increases with pH. The total mean concentration of cations of the solid increases with pH even without cadmium, but this effect is increased in the presence of cadmium. The composition tends to the stoichiometric value of 20 eq. cations/mol apatite for the highest pH and [Cd]s values. The sorption of cadium is therefore controlled by two processes: cationic exchange and protonation-deprotonation.


Polymer Calcium Aqueous Solution Cadmium Apatite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Miyahara, M. Miyakoshi, Y. Saito and H. Kozuka, Toxicol. Appl. Pharmacol. 55 (1980) 477.CrossRefGoogle Scholar
  2. 2.
    J. Christoffersen, M. R. Christoffersen, R. Larsen, E. Rostrup, P. Tingsgaard, O. Andersen and P. Grandjean, Calcif. Tissue Int. 42 (1988) 331.CrossRefGoogle Scholar
  3. 3.
    A. Bigi, M. Gazzano, A. Ripamonti, E. Foresti and N. Roveri, J. Chem. Dalton Trans. (1986) 241.Google Scholar
  4. 4.
    A. Panda and B. Sahu, J. Mater. Sci. Lett. 10 (1991) 638.CrossRefGoogle Scholar
  5. 5.
    A. Nounah, J. Szylagyi and J. L. Lacout, Ann. Chim. Fr. 15 (1990) 409.Google Scholar
  6. 6.
    A. Nounah, J. L. Lacout and J. M. Savariault, J. Alloys Compounds 186 (1992) 141.CrossRefGoogle Scholar
  7. 7.
    P. P. Mahapatra, D. S. Sarangi and B. Mishra, Indian J. Chem. 32A (1993) 525.Google Scholar
  8. 8.
    T. Suzuki, T. Hatsushika and Y. Hayakawa, J. Chem. Soc. Farad. Trans. I 77 (1981) 1059.CrossRefGoogle Scholar
  9. 9.
    T. Suzuki, K. Ischigaki and M. Miyake, ibid. 78 (1982) 3605.CrossRefGoogle Scholar
  10. 10.
    Idem, ibid. 80 (1984) 3157.CrossRefGoogle Scholar
  11. 11.
    T. Suzuki, K. Ischigaki and N. Ayuzawa, Chem. Eng. Commun. 34 (1985) 143.CrossRefGoogle Scholar
  12. 12.
    Y. Takeuchi, T. Suzuki and H. Arai, J. Chem. Eng. Jpn 21 (1988) 98.CrossRefGoogle Scholar
  13. 13.
    Y. Takeuchi and H. Arai, ibid. 23 (1990) 75.CrossRefGoogle Scholar
  14. 14.
    T. Suzuki, T. Hatsushika and M. Miyake, “New Developments in Ion Exchange”, Proceedings of the International Conference on Ion Exchange, ICIE'91, Tokyo, Japan, 2–4 October 1991, edited by M. Abe, T. Kataoka and T. Suzuki (Kodansha, Tokyo and Elsevier, Amsterdam, 1991) p. 401.Google Scholar
  15. 15.
    J. J. Middelburg and R. N. J. Comans, Chem. Geol. 90 (1991) 45.CrossRefGoogle Scholar
  16. 16.
    U. Vincent, J. Jeanjean and M. Fedoroff, J. Solid State Chem. 108 (1994) 68.CrossRefGoogle Scholar
  17. 17.
    Y. Xu, F. W. Schwartz and S. J. Traina, Environ. Sci. Technol 28 (1994) 1472.CrossRefGoogle Scholar
  18. 18.
    W. R. Busing, K. O. Martin and H. A. Levy, ‘A Cristallographic Least Squares Program,” ORFLS AFFINE (1984).Google Scholar
  19. 19.
    Idem, “A Cristallographic Function and Error Program”, ORFFE, report ORNL, TM306 (1964).Google Scholar
  20. 20.
    C. A. Beevers and D. B. Mcintyre, Miner. Mag. 27 (1945) 254.Google Scholar
  21. 21.
    J. M. Hughes, M. Cameron and K. D. Crowley, Am. Mineral. 74 (1989) 870.Google Scholar
  22. 22.
    M. I. Kay, R. A. Young and A. S. Posner, Nature 204 (1964) 1050.CrossRefGoogle Scholar
  23. 23.
    J. C. Trombe, Ann. Chim. Fr. 8 (1973) 251.Google Scholar
  24. 24.
    J. C. Trombe and G. Montel, J. Inorg. Nucl. Chem. 40 (1978) 15.CrossRefGoogle Scholar
  25. 25.
    G. R. Fisher, P. Bardhan and J. E. Geiger, J. Mater. Sci. Lett. 2 (1983) 577.CrossRefGoogle Scholar
  26. 26.
    A. S. Posner, A. Perloff and A. F. Diorio, Acta Crystallogr. 11 (1958) 308.CrossRefGoogle Scholar
  27. 27.
    R. W. G. Wyckoff, “Crystal Structures”, Vol. 3 (Wiley, New York, 1964) p. 232.Google Scholar
  28. 28.
    E. E. Berry, J. Inorg. Nucl. Chem. 29 (1967) 1585.CrossRefGoogle Scholar
  29. 29.
    L. Winand, Ann. Chim. Fr. 562 (1961) 941.Google Scholar
  30. 30.
    R. Zapanta-Legeros, Nature 206 (1965) 403.CrossRefGoogle Scholar
  31. 31.
    B. O. Fowler, Inorg. Chem. 13 (1974) 194.CrossRefGoogle Scholar
  32. 32.
    Idem, ibid. 13 (1974) 207.CrossRefGoogle Scholar
  33. 33.
    E. E. Berry, J. Inorg. Nucl. Chem. 29 (1967) 317.CrossRefGoogle Scholar
  34. 34.
    I. Petrov, B. Soptrajanov, N. Fuson and J. R. Lawson, Spectrochim. Acta 23A (1967) 2637.CrossRefGoogle Scholar
  35. 35.
    T. M. Gregory, E. C. Moreno and W. E. Brown, J. Res. Nat. Bur. Stand. A Phys. Chem. 74A (1970) 461.CrossRefGoogle Scholar
  36. 36.
    H. McDowell, T. M. Gregory and W. E. Brown, ibid. 81A (1977) 273.CrossRefGoogle Scholar
  37. 37.
    R. M. H. Verbeek, H. Steyaer, H. P. Thun and F. Verbeek, J. Chem. Soc. Farad. Trans. I 76 (1980) 209.CrossRefGoogle Scholar
  38. 38.
    J. Kragten, “Atlas of Metal-Ligand Equilibria in Aqueous Solution” (Ellis Horwood, Chichester, 1978).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Jeanjean
    • 1
  • M. Fedoroff
    • 1
  • F. Faverjon
    • 1
  • U. Vincent
    • 1
  • J. Corset
    • 2
  1. 1.Centre National de la Recherche ScientifiqueCentre d'Etudes de Chimie MétallurgiqueVitry-sur-SeineFrance
  2. 2.Centre National de la Recherche ScientifiqueLaboratoire de Spectrométrie Infra-Rouge et RamanThiaisFrance

Personalised recommendations