Journal of Materials Science

, Volume 30, Issue 24, pp 6145–6150 | Cite as

Gelatin layers for holographic purposes: an X-ray diffraction study

  • J. Crespo
  • M. A. Satorre
  • J. A. Quintana
  • F. Ania


In order to overcome uniformity problems in large u.v. holoconcentrators recorded in dichromated gelatin, the structure of hardened gelatin layers has been studied. X-ray diffraction patterns show that layers are formed by individual gelatin chains partly associated as triple-stranded helical rods as those found in native collagen. These rods, in turn, may form fibrillar aggregates. Helical rods and microfibrils are, to a great extent, parallel to the layer surface and their relative amount and packing depend on the hardener as well as on temperature and drying time after coating. X-ray diffraction offers the possibility of estimating in a simple manner the relative amount of triple-helical rods in crystallographic register within the gelatin layers. From these results, a method for obtaining uniform large holograms by means of a slow layer drying process is proposed.


Collagen Polymer Layer Surface Diffraction Pattern Gelatin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Crespo, M. Pardo, M. A. Satorre and J. A. Quintana, Appl. Opt. 32 (1993) 3068.CrossRefGoogle Scholar
  2. 2.
    M. Djabourov, J. Leblond and P. Papon, J. Phys. France 49 (1988) 319.CrossRefGoogle Scholar
  3. 3.
    Yu. B. Melnichenko, Yu. P. Gomza, V. V. Shilov and S. I. Osipov, Polym. Int. 25 (1991) 153.CrossRefGoogle Scholar
  4. 4.
    S. B. Ross-Murphy, Polymer 33 (1992) 2622.CrossRefGoogle Scholar
  5. 5.
    J. E. Jolley, Photogr. Sci. Engng. 14 (1970) 3068.Google Scholar
  6. 6.
    I. Pezron, M. Djabourov, L. Bosio and J. Leblond, J. Polym. Sci. part B: Polym. Phys. 28 (1990) 1823.CrossRefGoogle Scholar
  7. 7.
    P. G. Boj, J. Crespo, M. A. Satorre and J. A. Quintana, Appl. Opt. 33 (1994) 2917.CrossRefGoogle Scholar
  8. 8.
    B. J. Chang and C. D. Leonard, ibid. 18 (1979) 2407.CrossRefGoogle Scholar
  9. 9.
    M. A. Rougvie and R. S. Bear, J. Amer. Leather Chem. Assoc. 48 (1953) 735.Google Scholar
  10. 10.
    G. N. Ramachandran, in “Treatise in collagen”, Vol. 1, edited by G. N. Ramachandran (Academic Press, London, 1967) Ch. 3.Google Scholar
  11. 11.
    I. V. Yannas, J. Macromol. Sci.-Revs. Macromol. Chem. C7 (1972) 49.CrossRefGoogle Scholar
  12. 12.
    A. Miller, Trends Biochem. Sci. 7 (1982) 13.CrossRefGoogle Scholar
  13. 13.
    D. J. S. Mulmes, Proc. Natl. Acad. Sci. USA 78 (1981) 3567.CrossRefGoogle Scholar
  14. 14.
    I. Tomka, J. Photogr. Sci. 23 (1975) 97.CrossRefGoogle Scholar
  15. 15.
    G. C. Wrighton and H. K. Herglotz, ibid. 28 (1980) 49.CrossRefGoogle Scholar
  16. 16.
    E. Bradbury and C. Martin, Proc. Roy. Soc. (London) Ser. A 214 (1952) 183.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Crespo
    • 1
  • M. A. Satorre
    • 1
  • J. A. Quintana
    • 1
  • F. Ania
    • 2
  1. 1.Dept. Fisica AplicadaUniversidad de AlicanteAlicanteSpain
  2. 2.Instituto de Estructura de la MateriaCSICMadridSpain

Personalised recommendations