Journal of Materials Science

, Volume 30, Issue 24, pp 6136–6144 | Cite as

Ultrasonic spray pyrolysis of a chelated precursor into spherical YBa2Cu3O7−xhigh temperature superconductor powders

  • C. H. Chao
  • P. D. Ownby


YBa2Cu3O7−x powders have been prepared directly by ultrasonic spray pyrolysis using nitrate salts as precursors and citric acid and ethylene glycol as chelating agents. This method consists of ultrasonically atomizing a precursor solution into droplets, thermally chelating, drying, decomposing and solid state reacting these droplets in a carrier gas flowing through a tube furnace, forming a well characterized powder. The chelated precursor adjusted to pH 8 forms bidentate bonding between the cations and the chelating agents. Thermal analysis and infrared spectroscopy identify the decomposition steps of the precursor. The dry gel of the chelated precursor is nearly amorphous indicating intimate mixing on the atomic level. X-ray diffraction suggests the mechanism of forming the 1∶2∶3 crystalline phase. Spherical powders are produced with diameters ranging from 0.2 to 0.8 μm depending on the ultrasonic frequency and the solution concentration. The spherical particles are hollow or solid depending on the precursor type and the furnace temperature. The primary crystallite size is about 10–50 nm. X-ray diffraction data and infrared spectra show that the spray pyrolysed powder from the chelating precursor forms the YBa2Cu3O7−x phase at 800 °C, which is 100 °C lower than that formed from unchelated precursors.


Citric Acid Crystallite Size Infrared Spectrum Precursor Solution Tube Furnace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Yan, Mater. Sci. Eng. 48 (1981) 53.CrossRefGoogle Scholar
  2. 2.
    W. D. Kingery, in “Ceramic Powders”, edited by P. Vincenzini, Material Science Monographs, Vol. 16 (Elsevier, Amsterdam, 1983) p. 3.Google Scholar
  3. 3.
    B. C. Bunker, J. A. Voigt, D. L. Lamppa, D. H. Doughty, E. L. Venturini, J. F. Kwak, D. S. Ginley, T. J. Headley, M. S. Harrington, M. O. Eathough, R. G. Tissot Jr., and W. F. Hammetter, Mater. Res. Soc. Symp. Proc. 121 (1988) 373.CrossRefGoogle Scholar
  4. 4.
    M. Murata and K. Wakino, Mater. Res. Bull. 11 (1976) 323.CrossRefGoogle Scholar
  5. 5.
    R. W. Schwartz, D. J. Eichorst and D. A. Payne, Mater. Res. Soc. Symp. Proc. 73 (1986) 123.CrossRefGoogle Scholar
  6. 6.
    R. Legros, R. Metz, J. P. Caffin, A. Lagrange and A. Rousset, ibid. 121 (1988) 251.CrossRefGoogle Scholar
  7. 7.
    L. V. Interrante, et al., in “Chemistry of High-Temperature Superconductors”, edited by D. L. Nelson and T. F. George, American Chemical Society, Washington DC (1988) p. 169.Google Scholar
  8. 8.
    C. C. Cheng, Ms Thesis, University of Missouri-Rolla (1988).Google Scholar
  9. 9.
    M. Inoue, E. Takase, Y. Takaj and H. Hayakawa, Jap. J. Appl. Phys. 28 (1989) L1575.CrossRefGoogle Scholar
  10. 10.
    T. Fujisawa, A. Takagi, T. Honjoh, K. Okuyama, S. Oshima and K. Matsuki, ibid. 28 (1989) 1358.CrossRefGoogle Scholar
  11. 11.
    H. Meerwein and T. Bersin, Ann., 476 (1929) 113.Google Scholar
  12. 12.
    P. P. Phule and S. H. Risbud, Mater. Res. Soc. Symp. Proc. 121 (1988) 275.CrossRefGoogle Scholar
  13. 13.
    M. A. Accibal, J. W. Draxton, A. H. Gabor, W. L. Gladfelter, B. A. Hassler and M. L. Mecartney, ibid. 401 (1988).Google Scholar
  14. 14.
    J. C. Bernier, J. L. Rehspringer, S. Vilminot and P. Poix, ibid. 73 (1986) 129.CrossRefGoogle Scholar
  15. 15.
    E. Matijevic, Acc. Chem. Res. 14 (1981) 22.CrossRefGoogle Scholar
  16. 16.
    H. Imai, K. Takami and M. Naito, Mater. Res. Bull. 19 (1984) 1293.CrossRefGoogle Scholar
  17. 17.
    T. J. Gardner and G. L. Messing, Ceram. Bull. 63 (1984) 1498.Google Scholar
  18. 18.
    T. J. Gardner, D. W. Sproson and G. L. Messing, Mater. Res. Soc. Symp. Proc. 32 (1984) 227.CrossRefGoogle Scholar
  19. 19.
    D. W. Sproson, G. L. Messing and T. J. Gardner, Ceram. Int. 12 (1986) 3.CrossRefGoogle Scholar
  20. 20.
    K. S. Mazdiyasni, C. T. Lynch and J. S. Smith, J. Amer. Ceram. Soc. 48 (1965) 372.CrossRefGoogle Scholar
  21. 21.
    H. Ishizawa, O. Sakurai, N. Mizutani and M. Kato, Amer. Ceram. Soc. Bull. 65 (1986) 1399.Google Scholar
  22. 22.
    Y. Kanno and T. Suzuki, J. Mater. Sci. 23 (1988) 3067.CrossRefGoogle Scholar
  23. 23.
    D. W. Johnson Jr, Amer. Ceram. Soc. Bull. 60 (1981) 221.Google Scholar
  24. 24.
    B. Dubois, D. Ruffier and P. Odier, J. Amer. Ceram. Soc. 72 (1989) 713.CrossRefGoogle Scholar
  25. 25.
    T. T. Kodas, E. M. Engler, V. Y. Lee, R. Jacowitz, T. H. Baum, K. Roche, S. P. Parkin, W. S. Young, J. Kleder and W. Auser, Appl. Phys. Lett. 52 (1988) 1622.CrossRefGoogle Scholar
  26. 26.
    N. Tohge, M. Tatsumisago, T. Minami, K. Okuyama, M. Adachi and Y. Kousaka, Jap. J. Appl. Phys. 27 (1988) L1086–8.CrossRefGoogle Scholar
  27. 27.
    G. Schnittgrund, “Reproducible Large-Scale Production of Thallium-Based High-Temperature Superconductors”, Rockwell International Corp., Rocketdyne Division (1989).Google Scholar
  28. 28.
    L. M. Sheppard, Ceram. Bull. 70 (1991) 1484.Google Scholar
  29. 29.
    S. C. Zhang, and G. L. Messing, in “Ceramic Powder Science III”, edited by G. L. Messing, S. Hirano and H. Hausner (The American Ceramic Society, Westerville, OH, 1990).Google Scholar
  30. 30.
    R. L. Peskinand R. J. Raco, J. Acoust. Soc. Amer. 35 (1963) 1378.CrossRefGoogle Scholar
  31. 31.
    C. Liao, X. Chen, D. Du and X. Qi, Mod. Dev. Powder Metall. 18 (1988) 789.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • C. H. Chao
    • 1
  • P. D. Ownby
    • 1
    • 2
  1. 1.Departments of Electrical and Computer EngineeringUniversity of MissouriColumbia
  2. 2.Ceramic EngineeringUniversity of MissouriRollaUSA

Personalised recommendations