Advertisement

Journal of Materials Science

, Volume 30, Issue 24, pp 6119–6135 | Cite as

Liquid phase bonding of siliconized silicon carbide

  • A. C. Ferro
  • B. Derby
Article

Abstract

Aluminium was used as a braze to join siliconized silicon carbide to itself. Brazes were carried out in the 700–1100 °C temperature range, in vacuum. A thick reaction layer forms in the ceramic adjacent to the braze film, due to reaction between the metal braze and the free silicon present in the ceramic matrix. The silicon concentration of the braze film reaches values well above the maximum liquid solubility at the brazing temperature. A pseudotransient aluminium-silicon liquid phase promotes the formation of a 100% silicon braze film when either high temperatures, long holding times or very slow cooling rates are used. The dominant mechanism responsible for the formation of the braze microstructure is the preferential unrestrained solidification growth of Si plates on the braze plane, supported by fast liquid Si diffusion. Strong joints were produced and, when pure silicon brazes formed, four-point bend strengths over 200 MPa were obtained at testing temperatures as high as 700 °C. Fracture occurs either in the reaction layer-ceramic boundary or in the braze, the crack propagation plane changing from one side of the braze-ceramic interface to the other and through the braze itself.

Keywords

Reaction Layer Bend Strength Braze Temperature Free Silicon Metal Braze 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Nicholas, in: “Joining Ceramics Glass and Metal”, edited by W. Kraft (DGM Verlag, Oberursel, 1989) pp. 185–190.Google Scholar
  2. 2.
    M. G. Nicholas and D. A. Mortimer, Mater. Sci. Technol. 1 (1985) 657.CrossRefGoogle Scholar
  3. 3.
    C. R. Gostelow and J. E. Restall, Proc. Brit. Ceram. Soc. 22 (1973) 117.Google Scholar
  4. 4.
    T. Iseki, K. Arakawa and H. Suzuki, J. Mater. Sci. Lett. 15 (1980) 1049.CrossRefGoogle Scholar
  5. 5.
    R. R. Kapoor and T. W. Eagar, Ceram. Eng. Sci. Proc. 10 (1989) 1602.CrossRefGoogle Scholar
  6. 6.
    Idem, J. Amer. Ceram. Soc. 72 (1989) 448.CrossRefGoogle Scholar
  7. 7.
    J. K. Boadi, T. Yano and T. Iseki, J. Mater. Sci. 22 (1987) 2431.CrossRefGoogle Scholar
  8. 8.
    T. Yano, H. Suematsu and T. Iseki, ibid. 23 (1988) 3362.CrossRefGoogle Scholar
  9. 9.
    P. Batfalsky, J. Godziemba-Maliszewski and R. Lison, in “Joining Ceramics, Glass and Metal”, edited by W. Kraft (DGM Verlag, Oberursel, 1989) pp. 81–88.Google Scholar
  10. 10.
    K. Suganuma, T. Okamoto, M. Koizumi and M. Shimada, J. Amer. Ceram. Soc. 67 (1984) c256.CrossRefGoogle Scholar
  11. 11.
    J.-C. Viala, P. Fortier, C. Bernard and J. Bouix, in Proceedings of the First European Conference on Composite Materials, Bordeaux (1985) pp. 583–588.Google Scholar
  12. 12.
    J.-C. Viala, P. Fortier and J. Bouix, J. Mater. Sci. 25 (1990) 1842.CrossRefGoogle Scholar
  13. 13.
    A. S. Isaikin, V. M. Chubarov, B. F. Trefilov, V. A. Silaev and Y. A. Gorelov, Metal Sci. Heat Treatment 22 (1980) 815.CrossRefGoogle Scholar
  14. 14.
    T. Iseki, T. Maruyama and T. Kameda, Proc. Brit. Ceram. Soc. 34 (1984) 241.Google Scholar
  15. 15.
    D. J. Lloyd, H. Lagace, A. Mcleod and P. L. Morris, Mater. Sci. Eng. 107A (1989) 73.CrossRefGoogle Scholar
  16. 16.
    H. Nakae, K. Yamamoto and K. Sato, Mater. Trans. JIM 32 (1991) 531.CrossRefGoogle Scholar
  17. 17.
    V. Laurent, D. Chatain and N. Eustathopoulos, J. Mater. Sci. 22 (1987) 244.CrossRefGoogle Scholar
  18. 18.
    A. C. Ferro and B. Derby, Acta Metall. et Mater. 43 (1995) 3061.CrossRefGoogle Scholar
  19. 19.
    A. Khono, T. Yamada and K. Yokoi, J. Jpn. Inst. Metals 49 (1985) 876.CrossRefGoogle Scholar
  20. 20.
    T. Iseki, K. Yamashita and H. Suzuki, YogyoKyokai-Shi 91 (1983) 11.Google Scholar
  21. 21.
    T. Iseki, T. Kameda and T. Maruyama, J. Mater. Sci. 19 (1984) 1692.CrossRefGoogle Scholar
  22. 22.
    K. Suganuma, Y. Miyamoto and M. Koizumi, Ann. Rev. Mater. Sci. 18 (1988) 47.CrossRefGoogle Scholar
  23. 23.
    O. M. Akselsen, J. Mater. Sci. 27 (1992) 1989.CrossRefGoogle Scholar
  24. 24.
    A. Suzumura, T. Onzawa, Y. Arata, A. Oomori and S. Sano, Kovonngakkai-Shi 13 (1987) 43.Google Scholar
  25. 25.
    J. D. Whittenberger, T. J. Moore and D. L. Kuruzar, J. Mater. Sci. Lett. 6 (1987) 1016.CrossRefGoogle Scholar
  26. 26.
    H. Grünauer, K. Schweißanlagen and U. Roboter, in: “Joining Ceramics, Glass and Metal”, edited by W. Kraft (DGM Verlag, Oberursel, 1989) pp. 185–190.Google Scholar
  27. 27.
    B. Derby and E. R. Wallach, Metal. Sci. 16 (1982) 49.CrossRefGoogle Scholar
  28. 28.
    W. Kraft (editor), “Joining Ceramics, Glass and Metal” (DGM Verlag, Oberursel, 1989).Google Scholar
  29. 29.
    M. G. Nicholas (editor), “Joining of Ceramics” (Chapman & Hall, London, 1990).Google Scholar
  30. 30.
    T. Iseki, K. Yamashita and H. Suzuki, J. Amer. Ceram. Soc. 64 (1981) c13.CrossRefGoogle Scholar
  31. 31.
    M. Naka, T. Saito and I. Okamoto, J. Mater. Sci. 26 (1991) 1983.CrossRefGoogle Scholar
  32. 32.
    Idem, J. Mater. Sci. Lett. 6 (1987) 875.CrossRefGoogle Scholar
  33. 33.
    J. L. Murray and A. J. McAlister, Bull. Alloy Phase Diag. 5 (1984) 74.CrossRefGoogle Scholar
  34. 34.
    D. J. Clinton, L. A. Lay and R. Morral, NPL Report Chem. 113 (1980) 1.Google Scholar
  35. 35.
    U. Schwabe, L. R. Wolff, F. J. Loo and G. J. Ziegler, Eur. Ceram. Soc. 9 (1992) 407.CrossRefGoogle Scholar
  36. 36.
    E. A. Brandes (editor), “Smithells Metal Reference Book”, 6th Edn (Butterworth, London, 1983).Google Scholar
  37. 37.
    D. R. Lide (editor), “CRC Handbook of Chemistry and Physics”, 71st Edn (CRC Press, Boston, MA, 1990) pp. 5.70–1.Google Scholar
  38. 38.
    “Inspec, Properties of Silicon”, Emis Data Reviews Series No. 4, edited by T. H. Ning and C. Hilsum (The Institute of Electric Engineers, 1988).Google Scholar
  39. 39.
    M. L. Torti, R. A. Alliegro, D. W. Richerson, M. E. Washburn and G. Q. Weaver, Proc. Brit. Ceram. Soc. 22 (1973) 129.Google Scholar
  40. 40.
    W. George, ibid. 22 (1973) 147.Google Scholar
  41. 41.
    R. W. Olesinski and G. J. Abbaschian, in: “Binary Alloy Phase Diagrams”, Vol. 1. 2nd Edn, edited by T. B. Massalski (ASM International, Metals Park, OH, 1990) pp. 882–883.Google Scholar
  42. 42.
    A. C. Ferro, PhD thesis, Oxford University (1992).Google Scholar
  43. 43.
    W. Kurz and D. J. Fisher, “Fundamentals of Solidification” (Trans. Tech. Ltd, Aedermannsdorf, 1989) pp. 122–295.Google Scholar
  44. 44.
    C. Weiss-Jand Loper, Trans. AFS. Paper 32 (1987).Google Scholar
  45. 45.
    M. Schamsuzzoha and L. M. Hogan, J. Cryst. Growth 76 (1986) 429.CrossRefGoogle Scholar
  46. 46.
    M. Schamsuzzoha, L. M. Hogan, D. J. Smith and P. A. Deymier, ibid. 112 (1991) 635.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. C. Ferro
    • 1
  • B. Derby
    • 1
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations