Advertisement

Bioprocess Engineering

, Volume 3, Issue 2, pp 93–100 | Cite as

Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification

  • M. Matsumura
  • H. Kataoka
  • M. Sueki
  • K. Araki
Originals

Abstract

The liquid membrane prepared with oleyl alcohol was used in pervaporation of dilute aqueous butanol solutions. The selectivity of this liquid membrane was found to be superior than that of silicone rubber membrane, and the separation factor for butanol was 180. Energy saving effect of pervaporation in butanol purification was investigated by comparing the energies required to purify a butanol solution of 0.5 wt.% in the following three separation systems; a conventional distillation system, a separation system combining pervaporation with distillation, and a pervaporation system using a hydrophobic membrane and a hydrohylic membrane in series. When the pervaporation using oleyl alcohol liquid membrane was employed as a pretreatment process of butanol purification, the energy requirement was found to be around one-tenth of that of conventional distillation.

Keywords

Butanol Silicone Rubber Liquid Membrane Pervaporation Separation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols

ED MJ/kg

Specific energy requirement of butanol purification by distillation

J kg/(m2 · h)

Total permeation flux

JB kg/(m2 · h)

Permeation flux of butanol

P1, P2 MPa

Pressure at inlet and outlet of vacuum pump

Q kJ/h

Energy transfer rate

QCQW kJ/h

Energy consumption rate of condenser and vacuum pump

R J/K · mol

Gas constant

t, T °C, K

Temperature

W-g/h

Mass flow rate of butanol/water binary mixture

(W)F1,-kg/h

Mass flow rate of aqueous butanol solution

(W)F2

at inlet and outlet of permeation cell

W* kJ/mol

Energy requirement of adiavatic expansion

XB

Butanol mass fraction of aqueous butanol solution

(XB)F

Butanol mass fraction of aqueous butanol solution supplied into distillation column

(XB)F1

Butanol mass fraction of aqueous butanol

(XB)F2

solution at inlet and outlet of permeation cell

YB

Butanol mass fraction in permeate

α

Separation factor of butanol

γ

Adiavatic constant

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schoutens, G. H.; Groot, J. W.; Hoebeek, J. B, W.: Application of isopropanol-butanol-ethanol mixtures as an engine fuel. Process Biochem. Feb. (1986) 30Google Scholar
  2. 2.
    Kolot, F. B.: Immobilized cells for solvent production. Process Biochem. Feb. (1984) 7–13Google Scholar
  3. 3.
    Essien, D.; Pyle, D. L.: Energy conservation in ethanol production by fermentation. Process Biochem. Aug. (1983) 31–37Google Scholar
  4. 4.
    Murphy, T. K.; Blanch, H. W.; Wilke, C. R.: Water recycle in extractive fermentation. Process Biochem. Nov./Dec. (1982) 6–10Google Scholar
  5. 5.
    Larsson, M.; Holst, O.; Mattiasson, B.: Butanol fermentation using a selective adsorption for product recovery. Preceeding of the third European congress on biotechnology. Vol. 2, pp 313–316. Munich, 1984Google Scholar
  6. 6.
    Dadgar, A. M.; Foutch, G. L.: The evaluation of solvents for the recovery of Clostridium fermentation products by liquid-liquid extraction. Proceeding of the 7th symposium on biotechnology for fuels and chemicals. Tennessee, 1985Google Scholar
  7. 7.
    Ishii, S.; Taya, M.; Kobayashi, T.: Production of butanol by Clostridium acetobutylicum in extractive fermentation system. J. Chem. Eng. Japan. 18 (1985) 125–130Google Scholar
  8. 8.
    Groot, W. J.; Schoutens, G. H.; Beelen, P. N.; Van den Oever, C. E.; Kossen, N. W. F.: Increase of substrate conversion by pervaporation in the continuous butanol fermentation. Biotechnol. Lett. 6 (1984) 789–792Google Scholar
  9. 9.
    Ohya, H.; Matsumoto, K.; Negishi, Y.; Matsumoto, M.: Concentration of acetone and n-butanol its aqueous solutions by pervaporation using porous polypropylene hollow-fiber membrane. Membrane 11 (1986) 285–298Google Scholar
  10. 10.
    Garcia, A.; Iannotti, E. L.; Fischer, J. L.: Butanol fermentation liquor production and separation by reverse-osmosis. Biotechnol. Bioeng. 28 (1986) 785–791Google Scholar
  11. 11.
    Taya, M.; Ishii, S.; Kobayashi, T.: Monitoring and control for extractive fermentation of Clostridium acetobutylicum. J. Ferment. Technol. 63 (1985) 181–187Google Scholar
  12. 12.
    Matsumura, M.; Kataoka, H.: Separation of dilute aqueous butanol and acetons solutions by pervaporation through liquid membranes. To be published in Biotechnol. Bioeng.Google Scholar
  13. 13.
    Kimura, S.; Nomura, T.: Pervaporation of organic substance water system with silicone rubber membrane. Membrane 8 (1983) 177–183Google Scholar
  14. 14.
    Huang, R. Y. M.; Jarvis, N. R.: Separation of liquid mixtures by using polymer membranes. II. Permeation of aqueous alcohol solutions through cellophane and poly(vinylalcohol). J. Appl. Polym. Sci. 14 (1970) 2341–2356Google Scholar
  15. 15.
    Ohya, H.: Feasibility of concentration of dilute aqueous ethanol solution by favorable-unfavorable membranes system. Membrane 9 (1984) 171–176Google Scholar
  16. 16.
    Perry, J. H.: Chemical engineers' handbook, 3rd edition, pp. 563–660. New York: McGraw-Hill 1950Google Scholar
  17. 17.
    Aptel, P.; Challard, N.; Cuny, J.; Neel, J.: Application of the pervaporation process to separate azeotropic mixture. J. Membrane Sci. 1 (1976) 271–287Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. Matsumura
    • 1
  • H. Kataoka
    • 1
  • M. Sueki
    • 2
  • K. Araki
    • 2
  1. 1.Institute of Applied BiochemistryUniversity of TsukubaIbarakiJapan
  2. 2.Research and Development CenterChiyada Chemical Engineering and Construction Co. Ltd.YokohamaJapan

Personalised recommendations