Journal of Materials Science

, Volume 29, Issue 6, pp 1680–1685 | Cite as

Synthesis of silicon oxynitride from a polymeric precursor

Part II The formation of trimethylcyclotrisilazane and tetramethylcyclotetrasilazane from the ammonolysis of dichloromethylsilane in diethyl ether
  • Ga -Er Yu
  • J. Parrick
  • M. Edirisinghe
  • D. Finch
  • B. Ralph


Proton nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and gas chromatography (GC) have been used to study the products of ammonolysis of dichloromethylsilane in diethyl ether at 0 °C. Results indicate that the major products are trimethylcyclotrisilazane and tetramethylcyclotetrasilazane. Hydrolysis of the cyclosilazanes has also been qualitatively investigated. A simple and useful method for the identification of cyclosilazanes has been developed using the 1H NMR technique.


Polymer Silicon Ether Hydrolysis Fourier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ohashi, K. Hirao, T. Nagaoka, K. Watari, M. Yasuoka and S. Kanzaki, Br. Ceram. Trans. J. 91 (1992) 202.Google Scholar
  2. 2.
    D. Seyferth, G. H. Wiseman, J. M. Schwark, Y. -F. Yu and C. A. Putasse, in “Inorganic and Organometallic Polymers”, edited by M. Zeldin, K. Wynne and H. R. Allcock (American Chemical Society, Washington, DC, 1988) p. 143.CrossRefGoogle Scholar
  3. 3.
    D. Seyferth and Y. -F. Yu, in “Design of New Materials”, edited by D. L. Cocke and A. Clearfield (Plenum, New York, 1987) p. 79.CrossRefGoogle Scholar
  4. 4.
    Y. -F. Yu and T. Mah, in “Better Ceramics Through Chemistry II”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (Materials Research Society, Pittsburgh, 1986) p. 559.Google Scholar
  5. 5.
    G.-E. Yu, J. Parrick, M. Edirisinghe, D. Finch and B. Ralph, J. Mater. Sci. 28 (1993) 4250.CrossRefGoogle Scholar
  6. 6.
    R. C. Osthoff and S. W. Kantor, in “Inorganic Syntheses”, Vol 5, edited by T. Moeller (McGraw-Hill, New York, 1957) p. 61.Google Scholar
  7. 7.
    C. Eaborn, “Organosilicon Compounds” (Academic, New York, 1960) p. 339.Google Scholar
  8. 8.
    R. Fessenden and J. S. Fessenden, Chem. Rev. 61 (1961) 361.CrossRefGoogle Scholar
  9. 9.
    W. Fink, Angew. Chem. Internat. 5 (1966) 760.CrossRefGoogle Scholar
  10. 10.
    O. Kenneth and Ch. -L. Lee, in “Cyclic Monomers”, edited by K. C. Frisch (Wiley-Interscience, New York, 1972) p. 459.Google Scholar
  11. 11.
    R. M. Laine, Y. D. Blum, A. Chow, R. Hamlin, K. B. Schwartz and D. J. Rowecliffe, Polym. Prepr. (Amer.) Chem. Soc., Div. Polym. Chem.) 28 (1987) 393.Google Scholar
  12. 12.
    K. A. Youngdahl, K. M. Laine, R. A. Kennish, T. R. Cronin and G. G. A. Balavoine, in “Better Ceramics Through Chemistry III”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (Materials Research Society, Pittsburgh, 1988) p. 489.Google Scholar
  13. 13.
    D. A. Armitage, in “The Silicon-Heteroatom Bond”, edited by S. Patai and Z. Rappoport (J Wiley, Chichester, 1991) p. 356.CrossRefGoogle Scholar
  14. 14.
    W. Verbeek, Ger. Offen. 2218960 (1973).Google Scholar
  15. 15.
    W. Verbeek and G. Winter, Ger.Offen. 2236078 (1974).Google Scholar
  16. 16.
    G. Winter, W. Verbeek and M. Mansmann, Ger. Offen. 2243527 (1974).Google Scholar
  17. 17.
    R. R. Wills, R. A. Markle and S. Mukherjee, Amer. Ceram. Soc. Bull. 62 (1983) 904.Google Scholar
  18. 18.
    D. Seyferth and G. H. Wiseman, J. Amer. Ceram. Soc. 67 (1984) C-133.Google Scholar
  19. 19.
    Idem, US Patent 4482669 (1984).Google Scholar
  20. 20.
    Idem, in “Science of Ceramic Chemical Processing”, edited by L. L. Hench and R. Ulrich (J Wiley, New York, 1986) p. 354.Google Scholar
  21. 21.
    G. H. Wiseman and D. Seyferth, Organometallic 5 (1986) 146.CrossRefGoogle Scholar
  22. 22.
    S. Brewer and C. P. Haber, J. Amer. Chem. Soc, 70 (1948) 3888.CrossRefGoogle Scholar
  23. 23.
    E. A. Semenova, D. Ya. Zhinkin and K. A. Andrianov, Iz. Ak. Nauk. SSSR, Otd. Khim. Nauk. 2 (1962) 269.Google Scholar
  24. 24.
    D. Seyferth and G. H. Wiseman, Polym. Prepr. (Amer. Chem. Soc., Div. Polym. Chem.) 25 (1984) 10.Google Scholar
  25. 25.
    D. Ya. Zhinkin, E. A. Semenova, M. V. Sobolevskii and K. A. Andrianov, Plasticheskie Massy 12 (1963) 16.Google Scholar
  26. 26.
    D. Ya. Zhinkin, E. A. Semenova and K. A. Andrianov, Iz. Ak. Nauk. SSSR, Ser. Khim. (1963) 1989.Google Scholar
  27. 27.
    E. P. Lebedev and V. O. Reikhsfel'd, Zh. Obshch. Khim. 38 (1968) 655.Google Scholar
  28. 28.
    D. Seyferth, J. M. Schwark and Y. -F. Yu, International publication no WO88/01260, 25 Feb 1988 (Patent Cooperation Treaty, 1988).Google Scholar
  29. 29.
    W. Noll, “Chemistry and Technology of Silicones” (Academic, New York, 1968) p. 67.Google Scholar
  30. 30.
    D. R. Anderson, in “Analysis of Silicones”, edited by A. L. Smith (J Wiley, New York, 1974) p. 247.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Ga -Er Yu
    • 1
    • 2
  • J. Parrick
    • 1
  • M. Edirisinghe
    • 2
  • D. Finch
    • 2
  • B. Ralph
    • 2
  1. 1.Department of ChemistryBrunel UniversityUxbridgeUK
  2. 2.Department of Materials TechnologyBrunel UniversityUxbridgeUK

Personalised recommendations